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Abstract 

Objectives: We apply a general case replacement framework for quantifying the robustness of causal inferences to characterize the 
uncertainty of findings from clinical trials. 

Study design and setting: We express the robustness of inferences as the amount of data that must be replaced to change the 
conclusion and relate this to the fragility of trial results used for dichotomous outcomes. We illustrate our approach in the context of 
an RCT of hydroxychloroquine on pneumonia in COVID-19 patients and a cumulative meta-analysis of the effect of antihypertensive 
treatments on stroke. 

Results: We developed the Robustness of an Inference to Replacement (RIR), which quantifies how many treatment cases with 
positive outcomes would have to be replaced with hypothetical patients who did not receive a treatment to change an inference. The 
RIR addresses known limitations of the Fragility Index by accounting for the observed rates of outcomes. It can be used for varying 
thresholds for inference, including clinical importance. 

Conclusion: Because the RIR expresses uncertainty in terms of patient experiences, it is more relatable to stakeholders than P -values 
alone. It helps identify when results are statistically significant, but conclusions are not robust, while considering the rareness of events 
in the underlying data. © 2021 Elsevier Inc. All rights reserved. 

Keywords: Robustness of findings; Randomized controlled trials; Fragility; Case replacement; Statistical significance; Clinical importance 

 

 

 

 

 

 

 

 

 

 

In 2020, the COVID-19 pandemic generated extraordi-
nary demand—from the public, policymakers, and medical
practitioners alike—for evidence-based strategies to save
people’s lives and facilitates a return to normalcy [1] . But
the priority placed on evidence-based medicine [2 , 3] and
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the need to assess the robustness of medical evidence as it
emerges is not unique to times of crisis. Indeed, a corner-
stone of medical practice and clinical decision-making is
the use of evidence-based medicine (EBM), which stresses
“the conscientious, explicit, and judicious use of current
best evidence in making decisions about the care of indi-
vidual patients” [2] . 

The challenge for EBM is that treatment decisions, re-
search agendas, and even state-wide policies sometimes
must move forward before definitive evidence can accu-
mulate, particularly during any period of rapidly evolving
science. When there are immediate implications of new
findings—as there often are with the COVID-19 Pandemic
rsity from ClinicalKey.com by Elsevier on January 03, 
n. Copyright ©2024. Elsevier Inc. All rights reserved.
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What is new? 

• We introduce a case replacement framework for 
sensitivity analysis of clinical trials. 

• The framework supports statements such as “The 
inference would change if xx of the treatment pa- 
tients who experienced positive outcomes were re- 
placed by hypothetical patients who did not receive 
a treatment.”

• The framework complements the Fragility Index by 

accounting for the rarity of negative outcomes. For 
example, large case replacement is required when 

the Fragility Index is small but negative outcomes 
are rare. 

• The framework can be used for any threshold, in- 
cluding minimally important differences and statis- 
tical significance. 

• The framework applies to a broad set of models 
and research designs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1 , 4] —it is crucial that researchers leverage as many tools
as possible to evaluate the robustness of evidence that
shapes clinical decision-making. Furthermore, for salient
public health issues, there is a need to present scientific
evidence so that it is understandable to diverse stakehold-
ers, including researchers, front line physicians, public of-
ficials, the media, and the public itself. Therefore, in this
paper, we advance a method for quantifying the robustness
of a study’s inference based on changes in the underlying
data. This method can be used to quantify the robustness
of inferences from many study designs [5] ; however, in
this paper we focus on application to Randomized Control
Trials (RCT) in medicine. 

Our approach to characterizing the robustness of an in-
ference is based on case replacement. In an RCT, this in-
volves asking how many patients randomly assigned to
the treatment group who experienced a positive outcome
would have to be replaced with hypothetical patients who
did not receive a treatment in order to change an inference.
This can support statements such as “The inference would
change if xx of the n treatment patients who experienced
positive outcomes were replaced by hypothetical patients
who did not receive a treatment.” This approach to quanti-
fying the robustness of an inference is consistent with ev-
idence that suggests that doctors and patients have an eas-
ier time making inferences from information presented in
terms of natural frequencies (such as the number of treat-
ment cases that experienced a positive outcome) rather than
probabilities [6 , 7] . Furthermore, though we acknowledge
recent and past critiques regarding the use of statistical
significance as the threshold for clinical decision-making
[8 , 9] , some of our examples will use thresholds based on
statistical significance to determine what it would take to
Downloaded for Anonymous User (n/a) at Florida State Univers
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change our inference. This is largely because statistical sig-
nificance still dominates the public conversation (see the
Discussion); however, our approach can be generalized to
other thresholds, such as those identified by the minimally
important difference, which is another standard for making
inferences and informing clinical actions [10–12] . 

1. Characterizing the uncertainty of inferences 

The crux of the challenge for EBM resides in how
the uncertainty of the evidence is characterized. Even as
RCTs are appreciated by many for their rigor, in any sin-
gle RCT, those receiving the treatment may be slightly
healthier than those receiving the control simply due to
chance imbalances at baseline [13] . This is especially true
for small trials. On subsequent trials, the imbalance may
be in the other direction, where the control patients are
slightly healthier than the treatment patients at baseline.
Consequently, the comparison of outcomes for treatment
and control groups for any single trial may reflect base-
line imbalance in health—or confounding factors related
to health—between the groups. It is only for large sam-
ples in a single trial or accumulated over many trials that
randomly unbalanced differences are expected to even out,
supporting the unbiasedness of RCTs [13] . 

Standard errors are the main statistic used to character-
ize the inherent uncertainty in a treatment effect estimate
due to potential imbalance between treatment and control
groups on covariates related to the outcome. Yet standard
errors and their associated confidence intervals are theo-
retical statistical constructs notoriously prone to misinter-
pretation [14] . Thus, it is difficult to use standard errors
or confidence intervals to convey uncertainty to broad au-
diences, including clinicians and policymakers without ad-
vanced statistical training. This scenario raises an opportu-
nity for alternative methods for quantifying and conveying
clinical uncertainty of inferences based on single RCTS as
well as over the accumulation of trials [15] . 

In this paper, we advance the idea that quantifying the
robustness of a study’s inference(s) to changes in the un-
derlying data can be used to augment interpretation of the
uncertainty of inferences [5 , 16 , 17] . Our particular focus is
on case replacement: “To change an inference, how many
patients from the treatment group who experienced a pos-
itive outcome would have to be replaced with hypothetical
patients who did not receive a treatment [5] ?” A robust
inference, for example, would be one in which a large
portion of the patients in the treatment group with positive
outcomes would have to be replaced to change the infer-
ence, what we refer to as the R obustness of the I nference
to R eplacement (RIR). The RIR can show, for example,
that in a small study even a finding with a small P -value
(eg, P < 0.01) might be overturned by the replacement
of only a few patients, suggesting some uncertainty in the
inference and caution regarding recommended clinical ac-
tion. While the RIR helps characterize the inherent uncer-
ity from ClinicalKey.com by Elsevier on January 03, 
. Copyright ©2024. Elsevier Inc. All rights reserved.
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Fig. 1. Estimated effect and threshold for making an inference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tainty due to imbalance in sampling, it is worth noting that
some RCTs suffer from issues that go beyond sampling im-
balances, such as noncompliance, attrition, or problems in
intervention implementation fidelity [13] . The RIR might
have added value in such cases. 

In the application to dichotomous patient outcomes,
such as mortality, the RIR maps to the existing concept
of “fragility” which has been gaining increasing atten-
tion in clinical epidemiology [6 , 15–17 ] with applications
in oncology [18] and pediatrics [19 , 20] . The Fragility In-
dex indicates how many patients from the treatment group
would have to have different outcomes, or experience event
switches, to change an inference [17] . 

Recently, Walter, Thabane, and Briel [10] raised two
important critiques of the Fragility Index while extend-
ing the fragility framework. First, they raised the concern
that the Fragility Index only uses statistical significance as
a threshold for making an inference. Second, they noted
that the Fragility Index does not account for the relative
prevalence of negative outcomes in the data – switching
the outcome of a single patient from a positive to negative
outcome might be an extreme change if negative outcomes
are rare. 

One benefit of viewing fragility through the framework
of case replacement is that it helps address these limita-
tions [10] . First, the RIR explicitly represents thresholds
for inference that include, but are not exclusive to, statisti-
cal significance. We will demonstrate this in the Methods
and results sections and return to the issue in the Discu-
sison. Second, RIR is sensitive to the underlying rareness
of the event. An additional benefit is that case replacement
links the concept of fragility to a more general framework
for quantifying the robustness of inferences that can be ap-
plied to continuous outcomes and research designs other
than RCTs [5] . 

Ultimately, our case replacement framework generates
statements such as “The inference would change if xx of
the n treatment patients who had positive outcomes were
replaced by patients who did not receive a treatment.”
Thus, our framework represents the robustness of an infer-
ence in the very relatable, tangible, terms of patient experi-
ences. This informs debates about the bases for inferences
and helps quantify the potential threat of sources of bias
for an inclusive set of stakeholders. 

In the following sections we briefly introduce the tech-
nical argument and motivation behind a case replacement
approach to robustness and articulate its connection to
the Fragility Index for dichotomous outcomes. We then
demonstrate how RIR and the Fragility Index can be used
to examine the robustness of inferences in an emerging
body of research, such as the efficacy of COVID-19 treat-
ments, using two examples. The first is a small, preliminary
RCT regarding the effect of hydroxychloroquine (HCQ) on
pneumonia that occurs in COVID-19 patients. The second
is an application to a historical study-by-study emergence
of evidence across a series of RCTs presented in a meta-
Downloaded for Anonymous User (n/a) at Florida State Unive
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analysis of the effects of antihypertensive treatments on
stroke. Through these examples we show how quantifying
the robustness of inferences in terms of RIR can be ap-
plied to new, individual RCTs as they become available,
as well as to the accumulation of evidence across RCTs. 

2. Methods: expressing uncertainty in terms of 
changes in data 

We characterize the uncertainty of an inference in terms
of the changes to the data necessary to change the infer-
ence [5 , 16 , 17] . Our approach to quantifying the robustness
of an inference in terms of patient experiences is rooted
in the tradition of the counterfactual. Frank et al [5] con-
sidered replacing cases with counterfactual cases in which
those who received the treatment were hypothetically con-
sidered to have received the control, and vice versa. These
replacements generate potential changes in the outcomes
that we focus on here. Because the framework is nonpara-
metric it is general and can be applied across a variety of
outcomes and designs. 

To better introduce the case replacement framework,
consider the idealized example in Fig. 1 which compares
an estimated effect to a threshold for making an inference.
In Fig. 1 , the estimated treatment effect is 6 and for demon-
stration purposes we have drawn the threshold for infer-
ence at 4. Different people may have different thresholds;
researchers might employ a threshold based on statistical
significance whereas clinicians might employ a threshold
based on a minimally important difference [10–12] . But in
all cases the threshold pragmatically links the evidence to
recommended action [5 , 10] . That is, the threshold marks
the point of indifference to the evidence. Any more ev-
idence than the threshold and one would take an action
favoring treatment A. Any less and one would not. 

We can use the comparison of the estimated effect to
the threshold in Fig. 1 to characterize the strength of the
rsity from ClinicalKey.com by Elsevier on January 03, 
n. Copyright ©2024. Elsevier Inc. All rights reserved.
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1 Another alternative would have been to use the positive outcome rate 
as estimated by the whole sample, including treatment and control. This 
would reflect the null hypothesis of no treatment effect. 
evidence favoring the treatment. Specifically, one third of
the estimated effect of 6 exceeds the threshold of 4. Cor-
respondingly, we would expect over many samples that
one third of the estimated effect would have to be due to
sampling uncertainty or bias to change the inference [5] . 

Frank et al, [5] and Frank and Min [21] demonstrate
that one can interpret the difference between the estimated
effect and the threshold in terms of case replacement be-
tween the observed sample and a hypothetical population
where the treatment effect was zero (eg, there is no differ-
ence in mean outcomes between the treatment and control
groups). Specifically, one would need to replace 1/3 of the
observed cases with zero effect cases to reduce the esti-
mated effect of 6 below the threshold for inference of 4.
The proportion of the cases that one must replace to change
the inference quantifies the robustness of the inference. The
larger the proportion, the more robust the inference. 

Formally, to calculate the changes in the data necessary
to modify an estimated effect to a specific value, define the

modified value ( ̂  δ) as a function of the observed estimated
effect ( ̂  δo ) and the hypothesized effect in the unobserved
replacement data ( δu ) [21–23] . Assuming the proportion of
units receiving the treatment is the same in the observed

and unobserved data, an expression for ˆ δ is: 

ˆ δ = ( 1 − π) ̂  δo + πu , (1)

where π represents the proportion of observed cases re-

placed by unobserved cases. Therefore ˆ δ is a mixture, ac-
cording to π, of the estimate from the observed data ( ̂  δo )
with the effect in the unobserved data ( δu ). 

To determine the conditions necessary to change an in-
ference, we first assume there is no mean difference in
outcomes between the treatment and control groups in the
unobserved data: δu = 0 [5 , 24 , 25] . For example, δu = 0
holds exactly if the unobserved data are generated from a
null hypothesis of zero average treatment effect and there
is no sampling variability because there is no covariate
imbalance. Assuming δu = 0 yields: 

ˆ δ = ( 1 − π) ̂  δo (2)

Next, set ˆ δ = δ# where δ# defines the threshold for
making an inference such as an estimate associated with
an effect size of specific clinical significance [10 , 11] or
with a P -value of 0.05: 

ˆ δ = δ# = ( 1 − π) ̂  δo (3)

Solving for π yields: 

π = 1 − δ# / ̂  δo (4)

The expression in (4) allows one to calculate what pro-
portion of the cases ( π) in the observed sample would have
to be replaced with unobserved cases (for which δu = 0)

to reduce the combined estimate ( ̂  δ) below the threshold
( δ# ) for making an inference [5] . For instance, in the sim-
ple example in Fig. 1 where ˆ δo = 6 and δ# = 4, π = 1
Downloaded for Anonymous User (n/a) at Florida State Univers
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- 4/6 = 1/3, implying that to change the inference, 1/3 of
the observed cases would have to be replaced with unob-
served cases for which δu = 0. This allows us to express
uncertainty by conceptualizing how the existing data could
be mixed with unobserved cases instead of in terms of the
standard error – the theoretical standard deviation of esti-
mated effects under the null hypothesis. 

The general case replacement approach has been applied
extensively across the social sciences [26–28] , physical sci-
ences [29–31] , and in policy [32 , 33] , but it can also pro-
vide unique insight to dichotomous outcomes often used in
health (eg, Improved vs. Not Improved; Survived vs. De-
ceased). Adapting the general case replacement approach
expressed in (4) to studies with dichotomous outcomes re-
quires considering both the treatment status and outcome
of the cases to be replaced. For example, one could replace
cases from any or all the cells in a 2 × 2 contingency ta-
ble that categorizes observations by treatment /control and
survived/deceased. 

In this paper we made two choices about the cases to be
replaced that facilitate interpretation in a clinical context as
well as comparison to related approaches in epidemiology
[17] . First, we choose to replace cases from the treatment
group who had a positive outcome , and define the Robust-
ness of an Inference to Replacement (RIR) as the number
of treatment cases that had positive outcomes that would
have to be replaced to invalidate an inference. Second, we
draw the replacement cases from a hypothetical population
with the same rate of positive outcomes as in the control
group, which represents the absence of a treatment. 1 

Next, we assume that all cases experiencing the same
outcome (eg, improved vs. did not improve) are indistin-
guishable or exchangeable [34 , 35] . As a result, when re-
placing observed treatment cases that experienced positive
outcomes, the only clear changes after replacement would
be when cases that had positive outcomes were replaced
with cases that did not have positive outcomes, and vice
versa (ie, situations in which positive outcomes are re-
placed with positive outcomes cannot be distinguished). In
other words, when event switches occur. This allows us to
represent the hypothetical change in the sample not only
in terms of replacement, but also in terms of switching
of treatment cases that had positive outcomes to treatment
cases that did not have positive outcomes. If one counts
switches between events instead of just case replacements
from a hypothetical sample, and uses statistical significance
from zero as the threshold for inference, the result is the
robustness measure called the Fragility Index which has
been recently reintroduced in epidemiology [16 , 17] . 

The RIR directly extends the Fragility Index in two fun-
damental ways. First, using RIR as in Fig. 1 , any threshold
can be used as a basis for inference. We will provide a
ity from ClinicalKey.com by Elsevier on January 03, 
. Copyright ©2024. Elsevier Inc. All rights reserved.
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Table 1. Robustness of inference for hypothetical treatment and mortality. Example taken from Walter et al [10] . Cells represent 
number of cases. Fragility Index = number of cases to switch to change the inference; RIR represents the robustness of the 
inference to replacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 An alternative would be to calculate how many treatment cases would 
have to switch from negative to positive outcomes to change the inference. 
From this one could estimate the positive outcome rate in the treatment 
group if the estimated treatment effect were at the chosen threshold for 
inference. This rate could then be used to calculate the RIR from the 
number of switches from treatment negative outcomes to positive out- 
comes. 

3 Note that the Fragility Index is defined only for results that are posi- 
tive and statistically significant. For those results that are not statistically 
significant the Fragility Index is technically undefined [17] although it 
would be possible to count the number of switches necessary to increase 
an estimated effect above a threshold for positive statistical significance, 
with a corresponding, RIR = Fragility Index/ ̂  p , where = ˆ p would be based 
on the positive outcome rate in the control group instead of the negative 
outcome rate. 
demonstration of this in the Results section. Second, the
RIR accounts for the likelihood that an outcome for a case
will be switched. Consider the example in Table 1 , drawn
from Walter et al [10] . These results are from a hypo-
thetical experiment where 90/95 patients given Treatment
A survived (vs. died), 96/96 patients given Treatment B
survived, with a P -value of .029 (based on Fisher’s exact
test) leading to the inference that Treatment B is more ef-
fective than Treatment A. Walter et al [10] note that the
Fragility Index of this inference is 1 – if one alive case in
Treatment B were switched to died, the success rate would
change to 95/96 in treatment, with the corresponding P -
value would change to 0.118. Correspondingly, if one uses
a threshold of P = 0.05, the one switch would lead to an
inference that there is no difference between Treatments
A and B. Walter et al [10] note that the “fallacy” in this
[the Fragility Index] argument is that the change from 0
to 1 death in treatment group B may actually be unlikely
to occur because of the rarity of death. 

Walter et al’s [10] concern can be expressed by consid-
ering how switches are generated from case replacement.
In particular, we ask how many of the 96 Treatment B
Survived cases would have to be replaced with Treatment
A cases to change the inference that Treatment B was more
efficacious than Treatment A. We begin by drawing the
replacement cases from a population represented by Treat-
ment A with an estimated mortality rate of 5/95 or 5.3%.
Using the 5.3% mortality rate, for every 19 Treatment B
Survival cases replaced, we would expect 18 to remain
classified as alive, and 1 to be reclassified as died. There-
fore, we expect to have to replace 19 Treatment B alive
cases to generate the one Treatment died case necessary
to change the inference ( P = 0.118). RIR = 19 out of 96
while the Fragility Index = 1. 

Formally, the Fragility Index can be expressed as the
expected number of replaced treatment cases with posi-
tive outcomes multiplied by the observed probability of
negative outcomes in the control group: Fragility In-
dex = RIR x ˆ p , where ˆ p is the observed probability of
a negative outcome in the control group. This implies that
RIR = Fragility Index / ̂  p . In the example, 19 = 1/.053.
Thus, RIR is a funciton of ˆ p , addressing Walter et al’s
[10] critique of the Fragility Index by incorporating the
prevalence of positive and negative outcomes in the data. 
Downloaded for Anonymous User (n/a) at Florida State Unive
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While our focus is on quantifying the uncertainty of an
inference deemed significant or clinically relevant, the RIR
is flexible and can also quantify how far below the thresh-
old for making an inference a positive but not significant
treatment effect is. In this instance, we can ask how many
cases in the treatment group that had negative outcomes
would have to be replaced with cases from a hypothetical
population with the rate of positive outcomes in the control
group to change the inference. 2 This results in transferring
cases from the treatment group with negative outcomes to
the treatment group with positive outcomes. 3 

3. Results: using robustness of the inference to 

replacement (RIR) to express uncertainty 

3.1. Inference regarding the effect of hydroxychloroquine 
(HCQ) on pneumonia 

Consider one of the first reports of a randomized
trial for the drug hydroxychloroquine (HCQ) on COVID-
19 patients [36] . Conducted at the Renmin Hospital of
Wuhan University, 31of 62 COVID-19 patients were ran-
domly assigned to receive HCQ in addition to the standard
treatment. Pneumonia in 25 treatment patients improved
moderately or significantly while 17 control patients im-
proved moderately or significantly, resulting in a differ-
ence in improvement rates of 26 percentage points (25/31
- 17/31 = .26; χ2 = 4.7, P = 0.03; Table 2 ), and the con-
clusion that HCQ is efficacious. There are two challenges.
One is that the small sample is more likely to have baseline
rsity from ClinicalKey.com by Elsevier on January 03, 
n. Copyright ©2024. Elsevier Inc. All rights reserved.
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Table 2. Robustness of inference for hydroxychloroquine (HCQ) vs conventional treatments on pneumonia. Data from Table 2 of 
Chen et al [36] . 4 Cells represent number of cases. RIR represents the robustness of the inference to replacement with control 
cases. Fragility = number of cases to switch to change the inference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ated with a P value of 0.003. 

4 Generally, to reduce the difference in probability below any threshold 
δ# , one can switch x cases according to: x = D −( δ# + B/(A + B))(D + C) 
where the letters refer to the cells in Table 2 . 
imbalance. Another is that the trial was not double-blinded
[37] . Therefore, the researchers, physicians, and patients
could have been influenced in their behavior or labeling of
the outcomes by knowledge of the treatment assignment,
making the need to contextualize the uncertainty of the in-
ference all the more necessary. The question we pose then
is how many of the HCQ patients labeled as “improved”
(by someone who might have known what treatment the
patient had received) would have to be replaced to change
the inference that HCQ reduced pneumonia? 

To answer the question in the preceding paragraph
we consider replacing cases from HCQ (treatment) im-
proved with cases with estimated probability of exacer-
bated or unchanged in the conventional treatment (con-
trol) group ( ̂  p = 14/31 = 0.45). We then replace cases
until the P value < .05. Table 2 illustrates the result. If
about two of the 25 HCQ improved cases were replaced
with cases for which ˆ p = .45, we would expect one of
those cases would switch from improved to exacerbated
or unchanged (0.45 × 2), and the probability difference
between HCQ and the control would drop to a magni-
tude that would no longer be statistically significant at
the 5% level (24/31–17/31 = 23 percentage point differ-
ence). RIR = 2 (out of 25, or 8%), Fragility Index = 1,
(calculations conducted using http://konfound-it.com). The
low number of replacements needed, whether expressed as
RIR or the Fragility Index, highlights the tenuous nature of
the inference of an efficacious result despite its statistical
significance. 

In Fig. 2 we extend the HCQ example by plotting RIR
against corresponding estimated effect sizes along a con-
tinuum to represent a broader potential set of thresholds
[10] . Each data point represents the RIR to reduce the es-
timated effect in the HCQ example in Table 2 below a
particular effect size. Consistent with Table 2 , one would
expect to have to replace 2 of the observed treatment im-
proved cases with hypothetical cases with the rate of im-
proved outcomes in the control group ( ̂  p = .45) to reduce
the estimated effect of .26 below the threshold (probabil-
ity difference of .24) for statistical significance at the .05
level for a positive finding. But Fig. 2 also shows an RIR
of about 11 to reduce the initial probability difference of
.26 to 0.10. That is, one would expect to have to replace
Downloaded for Anonymous User (n/a) at Florida State Univers
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about 11 of the treatment improved cases (44%) to reduce
the estimated effect to 0.10. These 11 replacements would
generate five switches – Fragility Index = 5. More gener-
ally, Fig. 3 represents the RIR with respect to any effect
size, including effect sizes that define a minimal important
difference [10–12] . 4 This can inform discourse about in-
ferences made for different thresholds depending on the
context and the participants. 

3.2. Historical example: inference from accumulation of 
estimates of antihypertensive treatments 

The RIR can be applied to inform uncertainty about es-
timates of treatment effects accumulated across a series
of studies. This is an important complement to guide-
lines for characterizing the quality of evidence such as
GRADE [38] . These extremely valuable guidelines de-
scribe the quality of a body of evidence in terms of as-
pects of the study design (eg, nonrandom assignment to
treatment, nonblinded assignment to treatment, differential
attrition from treatment and control) that could cause bias.
Our comparison of the strength of evidence relative to a
pragmatic threshold can be particularly useful for evaluat-
ing accumulating evidence [15] especially in the context
of urgent crises, like the COVID-19 pandemic. 

To illustrate what the accumulation of estimated effects
of treatments might look like, we use a well-established ex-
ample from the clinical trials literature of the effect of anti-
hypertensive treatments on the probability of a stroke [39] .
Table 3 presents the robustness of inferences to replace-
ment (RIR) for effects of antihypertensive treatments on
patient strokes for the first and second studies in Collins’
et al [39] antihypertension meta-analysis. Study 1 con-
cluded that antihypertensive treatments were not associated
with a decrease in strokes with a P -value of 0.6. The sec-
ond study found a 7.6 percentage point decrease in stroke
probability for the treatment group. This result is associ-
ity from ClinicalKey.com by Elsevier on January 03, 
. Copyright ©2024. Elsevier Inc. All rights reserved.
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Fig. 2. Difference in probability of improved outcome (treatment – control) after replacing observed cases in HCQ example. Black square, study 
estimate; dashed line, positive estimate significant at 5% level. 

Table 3. Robustness of inferences to replacement (RIR) for antihypertensive treatment on stroke Control, treatment, and total contain number of 
cases from Table II of Collins et al [39] . Remaining columns based on authors’ calculations. 

Control Treatment Decrease in stroke 
probability for the 
treatment group 

P value 
(Fisher) RIR Stroke No stroke Stroke No stroke Total Fragility index 

Study 1: Wolff 1 41 2 43 87 -2.1 1 NA NA 

Study 2: VA II 20 174 5 181 380 7.6 0.003 39 4 

Study 1 + Study 2 21 215 7 224 467 5.9 0.010 34 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 We also calculated RIR for each point in Fig. 3 using fixed effects 
adjustments from cumulative meta-analysis [8] . The results are similar to 
To change the inference in the preceding paragraph,
one would expect to have to replace 39 (about 22%)
of the treatment “no stroke” cases with cases for which
ˆ p = 20/194 = 0.10 based on the control group. These 39 re-
placements would generate approximately 4 event switches
from treatment “no stroke” to treatment “stroke” (Fragility
Index = 4). The RIR for the first two studies combined is
34 (about 15%), with a Fragility Index of 3. 

As evidence from multiple RCTs accumulates, adding
the RIR to meta-analyses of RCTs can help assess and
visualize the robustness of inferences beyond reporting or
examining P -values. For example, in Fig. 3 we present
a series of robustness updates as each study was added
in the hypertensive meta-analysis, where each subsequent
point presents an updated estimated effect as well as cor-
responding RIR. Critically, the combined estimated treat-
ment effect fluctuated by several percentage points until
the 8th study (Year = 1979). As studies progressed, the
estimated treatment effect stabilized and the RIR increased
Downloaded for Anonymous User (n/a) at Florida State Unive
2024. For personal use only. No other uses without permissio
substantially. 5 Continuous updates to an analogous figure
during an emergent health issue would present decision-
makers with an up-to-date and intuitive characterization of
combined estimates as well as the robustness of the infer-
ences drawn from scientific evidence. 

4. Discussion 

While there is always a need to characterize the uncer-
tainty of estimates and inferences generated from scien-
tific research, that need is amplified during emergent crises
like the COVID-19 pandemic [1] . At critical times, physi-
cians and policymakers are under tremendous pressure to
rapidly adapt best practices to protect public health and
prevent mortality, often with limited, emerging research.
However, relying too heavily on results from single, early
those in Fig. 3 and are available from authors. 

rsity from ClinicalKey.com by Elsevier on January 03, 
n. Copyright ©2024. Elsevier Inc. All rights reserved.



K.A. Frank et al. / Journal of Clinical Epidemiology 134 (2021) 150–159 157 

Fig. 3. Robustness of inferences to replacement (RIR) as evidence accumulates: Historical case of antihypertension treatment and stroke. Black 
dots indicate the size of the estimated treatment effect based on all studies available up to that point in time; blue dots, the effect size just below 

statistical significance. Boxes label the corresponding RIR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trials, even a well conducted RCT, can be problematic be-
cause in any single trial random assignment to control and
treatment groups can be imbalanced, unintentionally by an
experimenter’s action or just by chance [13] . Moreover, us-
ing P -values to communicate the inherent uncertainty and
robustness of findings to broad audiences is difficult [15] .
As a result, the uncertainty associated with the conclusions
drawn from a single trial should be quantified adding nu-
ance to simple yes/no thresholds for statistical significance
[10] 

In this study, we developed the Robustness of an Infer-
ence to Replacement (RIR) which, like the Fragility Index,
can help identify and communicate when results are statis-
tically significant but conclusions may not be robust. The
RIR is based on a general case replacement framework
for quantifying the robustness of causal inferences. The
generality of the case replacement framework provides a
connection to other research designs and statistical mod-
els, including those that use continuous outcomes. It also
helps address known limitations of the Fragility Index by
accounting for the observed rates of outcomes. 

While some might argue that the difficulty with P -
values is indicative of a deeper problem that requires the
wholesale replacement of the null hypothesis significance
testing paradigm [8 , 9] , P -values remain central to discourse
about scientific findings [16 , 40] . Use of robustness analysis
approaches such as fragility and case replacement can help
mitigate the disadvantages of P -values. Instead of relying
on an understanding of sampling distributions which may
be unfamiliar to many, fragility and case replacement char-
acterize the robustness of conclusions in relatable and tan-
gible terms. For example, the RIR supports statements such
Downloaded for Anonymous User (n/a) at Florida State Univers
2024. For personal use only. No other uses without permission
as “The inference would change if xx of the n treatment
patients who experienced positive outcomes were replaced
by hypothetical patients who did not receive a treatment.”
This can inform debates about the bases for conclusions
and help an inclusive set of stakeholders interpret the po-
tential threat of sources of bias. 

One might raise the question about when the RIR is
large enough to interpret an inference as robust. First, we
encourage a comparison of the RIR with both the num-
ber of cases in the source cell (eg, treated cases that had
positive outcomes) as well as the overall sample size. Sec-
ond, given the generality of the RIR and the gap it and
the Fragility Index fill in the characterization of uncer-
tainty, we anticipate they will be employed extensively in
the coming years. As this occurs, researchers and clini-
cians will develop norms about what values of RIR and
the Fragility Index represent robust findings [5] . 

At its core, we emphasize that the RIR informs the con-
versation about the robustness of an inference, helping a
broader community weigh in on the link between evidence
and practice. In particular, the RIR provides more infor-
mation that can convey confidence in findings more clearly
and emphatically than the language of “highly statistically”
significant. Compare the use of the RIR to the use of the
P -value alone depicted in Fig. 4 (assuming a P -value of
.05 is used as a basis of a conclusion). As the P -value be-
comes smaller the RIR increases; more importantly, note
that in this example even though it might be difficult to
see or conceptualize the difference between P of 0.01 and
P of 0.001 on the horizontal axis, it is more direct to un-
derstand that the inference would change if 25 vs. 75 + of
the cases were replaced on the vertical axis. 
ity from ClinicalKey.com by Elsevier on January 03, 
. Copyright ©2024. Elsevier Inc. All rights reserved.
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Fig. 4. Robustness of inference to replacement (RIR) vs P -value. The curve shows the functional relationship between the RIR and the P -value. 
Baseline table has 380 cases evenly divided between treatment and control with odds ratio favoring the treatment of 1.22. The steep slope on the 
left indicates that RIR conveys differences in uncertainty even when very small P -values are almost indistinguishable and difficult to interpret. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While not the focus of this paper, a case replacement
approach to robustness can also provide benefit when con-
cerns go beyond P -values into deeper concerns about bias
[5] . For example, the RIR could be applied to observa-
tional studies which are being implemented during the
early stages of the COVID pandemic [41] . In this scenario,
the replacement cases are conceptualized as quantifying
the robustness of an inference drawn from a counterfac-
tual comparison generated by nonexperimental techniques.
In any application, the RIR helps weigh the strength of the
evidence against concerns about violations of assumptions
in the specific context of a given study [42] . But we em-
phasize the RIR alone is not a substitute for assessing the
comprehensive methodologic strength of a study – instead,
it is a helpful tool for understanding and communicating
the stability or robustness of any given conclusion based
on data in the context of the study design. 

No single sensitivity measure, including the RIR, is a
panacea. But sensitivity measures can facilitate a common
understanding among researchers, policymakers, journal-
ists, clinicians, and the public about the strength of the
evidence of potential interventions. This is crucial when,
as a society, we must quickly weigh the expected benefits
and harms of an intervention against the consequences of
inaction. 
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