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Abstract 

Beginning with debates about the effects of smoking on lung cancer, sensitivity analyses 

characterizing the hypothetical unobserved conditions that can alter statistical inferences have 

had profound impacts on public policy. One of the most ascendant techniques for sensitivity 

analysis is Oster’s (2019) coefficient of proportionality, which approximates how strong 

selection into a treatment on unobserved variables must be compared to selection on observed 

variables to change an inference. We refine Oster’s asymptotic approximation by deriving 

expressions for the correlations associated with a latent omitted variable that reduce an estimated 

effect to a specified threshold, given a corresponding coefficient of determination (R2). We 

verify our expressions through empirical examples and simulated data. We show that, because 

our calculations are exact, they apply regardless of sample size. In contrast, Oster’s 

approximation is likely to overstate robustness when sample size is small and observed 

covariates account for a large portion of an estimated effect relative to a baseline model. 

Moreover, even in cases that produce similar values, our correlation-based expressions have the 

advantage of not depending on the analyst’s choice of a baseline model. Our correlation-based 

expressions can be directly calculated from conventionally reported quantities through 

commands in R or Stata and an on-line app, and therefore can be applied to most published 

studies. We present best practices including making maximal use of observed covariates, caution 

(and an alternative correlation metric) when selection on observables is small and considering a 

minimum value of the maximal variance to be explained. 

 

Keywords: sensitivity analysis; causal inference; coefficient of proportionality 
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INTRODUCTION	

Cornfield et al. (1959) initiated sensitivity analysis in public policy to interpret inferences 

regarding the effect of smoking on lung cancer. In the context of lack of randomized experiments 

many questioned the effect of smoking on lung cancer.  For example, the famous statistician R. A 

Fisher (1958) argued “both characteristics [smoking and lung cancer] might be largely 

influenced by a common cause [genotype]” (page 108). Cornfield et al., countered by calculating 

that to overturn the inference, an unobserved characteristic “would need to be a near perfect 

predictor of lung cancer and about nine times more common among smokers than among 

nonsmokers” (Rosenbaum, 2005, page 1809).  

Cornfield et al. (1959) had a profound effect on tobacco policy. Cornfield was an 

acknowledged contributor to the U.S. Department of Health (1964) report on smoking and lung 

cancer and Cornfield et al (1959) is cited repeatedly (e.g., pages 141, 183) as a basis of causal 

inference in the report. The report, in turn, affected public policy concerning regulations of the 

use, sale, and advertising of tobacco products (Alberg et al., 2014, page 407) in the United States 

(U.S. Department of Health, 1989) and Britain (Berridge, 2006). 

Since Cornfield et al., (1959), sensitivity analyses have proliferated to inform policy-

relevant causal inferences in the social, health, and statistical sciences (e.g., Altonji, Elder & 

Taber, 2005; Cinelli & Haslett, 2020; Dorie et al., 2016; Frank, 2000; Frank et al, 2013; Imbens 

2003; Kallus, Mao, & Zhou, 2018; Robins, Rotnitzky & Scharfstein, 2000; Rosenbaum & Rubin, 

1983; Vanderweele & Arah, 2011). Perhaps the most ascendant technique for sensitivity analysis 

is Oster’s (2019) coefficient of proportionality (cited 2788 times as of March 17, 2023) which 

represents how strong selection on unobservable covariates would have to be relative to selection 

on observed covariates to nullify an estimated effect. In the Journal of Policy Analysis and 



Quantifying Sensitivity to Selection on Unobservables 

4 
 

Management, Oster’s (2019) technique has been used to inform inferences regarding effects of 

emission standards and public transit on infant health (Ngo, 2017), state subsidies on low‐income 

homeownership (Hembre, Moulton & Record, 2021), and temporary mortgage assistance for 

unemployed homeowners on mortgage default (Moulton et al., 2022). In each case the sensitivity 

analysis helps those interpreting the inference weigh the strength of the evidence relative to 

concerns about potentially omitted variables. 

In this paper we refine Oster’s approximation to the coefficient of proportionality by 

deriving expressions for correlations associated with a latent omitted variable required to obtain 

a specific effect size, given a threshold for inference and a targeted final R2. Our approach has 

four advantages. First, we improve on Oster’s asymptotic derivation by producing the exact 

specified conditions (e.g., estimated effect and R2) had the omitted variable been included in the 

model. Second, we verify our expressions of sensitivity are exact through \empirical examples 

and simulations, showing that Oster (2019) overstates the robustness of inferences for small 

samples in which the observed covariates account for a large portion of an initial baseline 

estimated effect. Third, our approach does not rely on the analyst’s choice of the baseline model 

required by Oster’s approach to assess coefficient stability when observed covariates are added 

to a model.  Fourth, our approach supports evaluation of robustness to omitted variables in the 

metric of a correlation as well as selection on unobservables relative to selection on observables.  

This is especially valuable when selection on observables is small.  Our correlation-based 

expressions can also be directly calculated from conventionally reported quantities and are 

available in R and Stata as well as an on-line app, and therefore can be applied to most published 

studies. 
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Background 

Altonji, Elder and Tabor (2002, 2005) introduced the coefficient of proportionality in the 

context of a two stage instrumental variables type estimation in which first selection into a 

treatment is predicted based on covariates (using a probit model) and then the predicted 

treatment is used to model an outcome.  Recognizing that there are likely unobserved factors that 

predict the treatment that could be related to the outcome, Altonji Elder and Tabor examine a 

range of scenarios to evaluate how strong selection into the treatment on omitted variables would 

have to be in the first stage, such that if included in a final model they would nullify the 

estimated effect in the second stage. For example, Altonji, Elder, and Tabor (2005, page 176) 

report the estimated ratio of selection on unobservables relative to selection on observables to 

nullify the effect of attending a Catholic school on college graduation is 1.43.  That is, selection 

on unobservables would have the 40% stronger than selection on observables to nullify the 

estimated effect. Altonji, Eleder and Tabor (2005) then draw on this result to inform a causal 

inference: “Since the ratio of selection on unobservables relative to selection on observables is 

likely less than one, part of the CH [Catholic High School] effect on college graduation is 

probably real” (pp., 176-177). 

Oster (2019) extends Altonji Elder and Tabor in three fundamental ways.  First, Oster 

(2019) considers more fully how covariates that might impact estimated effects should be 

interpreted in the context of the potential explanatory power (R2) of any model, including a 

hypothetical model that included the unobserved covariates.  Altonji, Elder and Tabor implicitly 

assume that all variance on an outcome can potentially be explained (Oster, 2019, page 188).  

But there may simply be aspects of an outcome that are unexplainable due to essential 

heterogeneity (Heckman, Urzua, & Vytlacil, 2006). Oster provides empirical validation for 
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choosing the maximum R2 of less than 1 based on an evaluation of inferences from randomized 

experiments that would hold for R2<1. 

Second, Oster (2019) verifies the derivation of the estimation of an effect based on 

coefficient stability with simulated data.  Altonji Elder and Tabor (2005) had not provided such 

validation. This is critical to establish under what conditions and what information is necessary 

to support the derivation; we will replicate this validation below as part of a broader evaluation 

of Oster’s derivation. 

Third, Oster (2019) leverages the change in estimated treatment effects and R2 when 

observed covariates are added to a model to anticipate the change in the estimated treatment 

effect if unobserved covariates were added.  Oster (2019) then uses this conceptualization to 

formulate a sensitivity analysis. Oster’s work consequently has enabled researchers to 

characterize the robustness of an estimated effect taking into account the explanatory power 

available given the context. For example, in the example we present below, Oster calculates that 

selection on unobservables would have to be greater than selection on observables to reduce the 

estimated effect of low birth weight and preterm delivery on IQ to zero, given a maximum R2 of 

.61 in (1c).  

While Oster makes important contributions to the conceptualization and application of 

the coefficient of proportionality it still leaves key limitations.  First, while Oster verifies through 

simulation the estimator for the treatment effect used to calculate the coefficient of 

proportionality, the expression for the coefficient of proportionality itself is not directly verified. 

through broad simulation or specific numerical examples Second, the derivation is only 

approximate and it is not known how the technique performs for small sample sizes. Third, the 
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conceptualization and derivation depend on the analyst’s choice of a baseline model used to 

determine coefficient stability when observed covariates are added.  

In this paper we will provide exact expressions to generate a specified estimated effect 

and corresponding R2, the two conditions Oster uses to define the coefficient of proportionality. 

We will verify our exact expressions through a numerical example as well as simulation. We will 

also show that the exact expressions do not depend on sample size nor on a baseline model 

(before key observed covariates are added to a model).  Furthermore, the expressions can be 

interpreted in terms of correlations associated with observed and unobserved covariates as well 

as proportional selection of unobservables to observables. Finally, the expressions derived here 

can be calculated from conventionally reported quantities and are available through the konfound 

commands in R and Stata as well as an on-line app (http://konfound‐it.com). In the next section 

we provide the basic set-up required for the derivation. 

 

OSTER’S	CONCEPTUALIZATION:	SENSITIVITY	IN	TERMS	OF	COEFFICIENT	STABILITY		

Setup and Notation 

Following Oster (2019, page 192), consider the models: 

0 1Y X    (1a, unconditional baseline), 

0 1 2Y X    β Z    (1b, intermediate with observed covariates, Z), and 

0 1 3
ˆ ˆ ˆ ˆY X CV     2β Z  (1c, hypothetical final, with unobserved covariate CV), 

where Y is the outcome (or dependent variable), X is the focal predictor (or independent 

variable), Z is an observed vector of covariates added to the unconditional model, typically to 

control for factors related to both the focal predictor and the outcome, and CV is an unobserved 
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covariate added to a hypothetical final model (1c) that was not included in (1b). We will later 

also consider extensions of this setup in which CV is a latent variable representing a set of 

covariates. For exposition, we focus on the specific concern that a positive 1 in (1b) is larger 

than 1̂ in (1c) because the CV is omitted from (1b). That is, there is positive bias in 1 , and 

therefore the inference about β1 from (1b) is invalid. Cases in which there is negative bias can be 

addressed by symmetry.  

Leveraging Coefficient Stability to Approximate Conditions when Unobserved Covariates 

are Added to a Model  

To inform inferences about β1 based on 1 and 1 Oster (2019) describes the common 

practice of interpreting an inference as robust if the estimated effect changes little from (1a) to 

(1b) when observed covariates are entered into the model.  This is referred to as “coefficient 

stability” and reflects the practice of examining a model for changes in the estimate of interest as 

covariates are added, with high stability presumably implying a lower likelihood that unobserved 

variables would alter that estimate.  

Formally, Oster (2019) uses the change in estimated effect from 0 to 1 and the change 

in explained variance from 2R to 2R from (1a) to (1b) to anticipate the conditions necessary to 

produce 1̂ and maximum R2 in model (1c) when unobserved covariates are added to the model. 

Oster draws on three quantities to represent coefficient stability: the change in the estimated 

effect from the baseline model in (1a) to (1b) --  1 1   ; the change in R2 from (1a) to (1b) -- 

 R R  ; and the specified change in R2 from model (1b) to model (1c) which includes the 

unobserved confounding variable --  MaxR R   . Consider (Oster, 2019, page 193):  
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1 1 1

1 1

1

ˆ ( )

ˆ
.

( )

Max

Max

R R

R R

R R

R R

    

  
 


  




 


  
 

 
   

(2) 

Expression (2) shows how Oster conceptualizes the relative rate of change of the estimated effect 

as proportional to the relative rate of change in R2, governed by δ.  

Oster (2019, page 193) then makes the assumption that δ =1 indicating that selection on 

unobservables equals that of selection on observables.  This yields the Restricted Estimator: 

*
1 1 1 1

MaxR R

R R
   

         

  
  .   (3) 

In Appendix A we replicate Oster’s validation of the estimator in (3), showing that the estimator 

is less accurate for small sample sizes. For example, the interquartile range for n=1000 is roughly 

triple that for n=10000.  

Sensitivity: The Approximate Coefficient of Proportionality, δ* 

In the spirit of Cornfield et al. (1959), Oster uses equation (3) to derive a measure of the 

sensitivity of the estimate and inference for β1. Specifically, setting 1̂ =β# (a threshold for 

evaluating 1̂ ) and solving (3) for δ* yields 

#
* 1

1 1 Max

R R

R R

 
 

   
      

  
   .  (4) 

Expression (4) allows one to calculate how strong selection on unobservables must be relative to 

selection on observables (δ*) to make the estimated effect 1̂ in model (1c) equal to a threshold β# 

for a specified R2 (RMax) in model (1c).  In this way expression (4) quantifies the robustness of an 

inference by characterizing the conditions necessary to change that inference. But note that the 



Quantifying Sensitivity to Selection on Unobservables 

10 
 

expression in (4) is based on the derivation and validation for 1̂ ; Oster offers no direct 

validation or justification for δ* to which we will turn in subsequent sections. 

Consider Oster’s empirical example of the effect of low birth weight and preterm on IQ 

(Oster’s Table 3: Column 3) for illustration throughout this paper.  It is the most robust inference 

(defined by of δ*) among Oster’s examples.  The inference is of scientific interest relating to how 

birth conditions extrapolate throughout the life course (e.g., Breslau et al., 1994).  The inference 

is of public policy interest because if low birth weight and preterm have an effect on IQ then 

public policy might attend more fully to the corresponding prenatal medical and social supports 

(Gross, Spiker & Haynes 1997; National Research Council, 2000). 

To obtain δ*, Oster (2019) used a baseline regression which included controls for child 

sex and age dummies (different from model 1a which has no covariates), but without seven key 

covariates (e.g., race, education, income). For this baseline model 1  =−.188, and 2R =.004. For 

the intermediate model (1b) with the seven key covariates 1 .125   , 2R = .251. For the final 

model (1c), Oster specified RMax=.61 and β#=0.  Therefore, from (3) using 1| |  and 1| | : 

#
* 1

1 1

.125 0 .251 .004
= 1.365

.188 .125 .61 .251Max

R R

R R

 
 

                    

  
   , 

which rounds to 1.37 as reported by Oster (2019). The interpretation is that selection on 

unobserved variables would have to be 1.37 times greater than selection on observed variables to 

reduce the estimated effect of low birth weight and preterm on IQ to 0 under the condition that 

adding unobserved covariates to the model produces a final R2 of .61. While the Restricted 
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Estimator in (4) is valuable for intuition, Oster also presented an Unrestricted Estimator that 

makes fewer assumptions that we use in our calculations below. 1 

 While Oster’s coefficient of proportionality has intuitive appeal and is derived from the 

estimator in (4), it has not been directly verified empirically or through simulation.  In the next 

section we derive exact expressions for the correlations associated with the omitted variable 

necessary to produce a specified Rmax and β#. We will then verify our expressions are exact 

through a numerical example and through simulation before using them to evaluate Oster’s 

approximation. 

 

EXACT	EXPRESSIONS	FOR	SENSITIVITY	IN	TERMS	OF	CORRELATIONS	

We follow other correlation-based approaches to sensitivity analysis (e.g., Cinelli & 

Hazlett, 2020; Frank, 2000) to derive the exact quantities that generate a specified estimated 

effect in (1c) and corresponding R2 in terms of correlations associated with the omitted variable 

CV.  We then use simulated data to verify our exact expressions and evaluate the accuracy of 

Oster’s approximation, showing that Oster’s approximation can be considerably inaccurate when 

n < 10000, as is often the case in practice.  We also verify our exact expressions through an 

empirical example. 

To derive the exact expressions that generate the specified results, note that Oster’s 

framework implies two conditions. First, that an inference of an effect based on the intermediate 

regression in (1b) is invalid if 1̂ in (1c) falls below some threshold for making an inference, 

defined as β#. Second, that the coefficient of determination (R2) in (1c) has a maximum value 

 
1 Adapting code from the R procedure o_delta_rsq_viz generated a value of 1.343 for the 
Unrestricted Estimator , less than 1% difference from the Restricted Estimator of δ* of 1.365 
based on (4). 
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Rmax = 2
Y X CVR  Z , the total variance in Y explained by X, Z, and CV (this includes Altonji, Elder and 

Tabor’s special case of Rmax =1). For example, on page 198, Oster finds “…the value of δ that 

would produce β =0 under the assumed Rmax….” Oster’s two conditions can then be formalized 

as  

1̂ =β#,                         (6a) 

2
Y X CVR  Z =Rmax<1.          (6b) 

To derive a measure of sensitivity, we use the added variable concept (Weisberg, 2005) 

to rewrite (1c) conditioning each variable on Z: 

0 1 3
ˆ ˆ ˆ| | |Y X CV    Z Z Z .  (7) 

When using Ordinary Least Squares (OLS) estimation, as we do throughout the remainder of this 

paper, the added variable concept ensures that the estimate of β1 in (7) equals that in model (1c).2 

Specifically, given ˆ X and ˆY , the estimate for 1̂ can be obtained from the partial correlation 

matrix Σ|Z 

|
|

| |

            |     |    |

|        1           

|         1         

|       1
X Y

CV Y CV X

Y X CV

Y

X r

CV r r



 

 
 
    
 
  

Z
Z

Z Z

Z Z Z

Z

Z

Z

 

where r represents a sample correlation between two scalers and “|” represents 

conditional on.  For example, rXꞏY|Z represents the observed correlation between X and Y 

conditional on, or partialling for, Z.  Thus, the expression for Σ|Z shows that there are two 

 
2 Expressions in terms of partial correlations allow us to identify the conditions that satisfy (6a) 
and (6b) in terms of rXꞏY|Z (which can be directly obtained from the reported 1 , its standard error, 

and the degrees of freedom) instead of rXꞏY which would require further assumptions (see 
Appendix B for details). 
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unknowns needed to estimate 1̂ : rCVꞏY|Z and rCVꞏX|Z. Below we leverage the two equations in (6a) 

and (6b) to develop expressions for rCVꞏY|Z and rCVꞏX|Z for a given value of rXꞏY|Z. These results are 

then used to directly obtain the coefficient of proportionality. The quantities RXꞏ|Z and RYꞏ|Z will be 

necessary at several points in the derivation.  They can either be directly obtained from the data, 

or see technical Appendix C for how they can be obtained from conventionally reported 

quantities: 2
1 ˆ ˆse( ),  , ,  Y X X YR   Z
 and n, and number of covariates.  

Assumptions 

1. Omitted variable is orthogonal to observed covariates 

Oster assumes (top of page 192) the observed covariates (Oster’s W1) and the unobserved 

covariates (Oster’s W2) are orthogonal.  This implies that because W1 is a function of the 

elements in Z, RZꞏCV=0 for each element in Z (Frank, 2000, page 165, makes the same 

assumption). Note that setting RZꞏCV=0 allows the strongest challenge to the inference of an effect 

of X on Y because if RZꞏCV≠0 then some of the impact of the unobserved covariate CV on 1̂

would be accounted for by the observed covariates in Z, weakening the challenge to the 

inference based on CV.  For example, the relationship between preterm and low birthweight (X) 

on IQ (Y) might be challenged in terms of quality of pre-natal care (CV). But the challenge is 

weaker if quality of pre-natal care is accounted for in part by measured covariates including 

income and education (Z). Therefore it is conservative to assume the impacts of unobserved 

covariates are absorbed by the observed covariates (Frank, 2000). 
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2. Single omitted confounding variable  

Oster (2019, pp. 191-192) represents all unobserved covariates with a single index, W2. 

Similarly, for derivation we assume a single unobserved covariate CV, allowing us to express the 

coefficient of proportionality by comparing rXꞏCV directly with RXꞏZ. In Appendix B we show how 

a single CV can be generalized to a vector CV under the assumption that each omitted variable is 

equally correlated with X (i.e.., rXꞏCV1=rXꞏCV2 = …=rXꞏCV for all CV) and each omitted variable is 

equally correlated with Y (i.e.., rYꞏCV1=rYꞏCV2 = …=rYꞏCV for all CV). That is, that each omitted 

variable is equally important regarding the estimation of the effect of X on Y. This is consistent 

with the thought experiment in which the elements in CV are unknown and therefore cannot 

easily be differentiated from one another. In this sense the CV can be considered a single latent 

variable that represents equal contributions of an arbitrary number of elements. Even without this 

assumption our derivation can generalize if the CV is considered a single latent variable that 

represents multiple unobserved variables. 

 

Leveraging Correlations to Generate Exact Conditions when Unobserved Covariates are 

Added to a Model  

Using the model in (7), condition (6a) implies:  

| #| |
1 2

|

ˆˆ
ˆ 1

Y X Y X CV Y CV

X X CV

r r r

r






  




 


|Z Z Z Z

|Z Z

, (8) 

where |X Yr  Z is a function of observed quantities: 1
| 2

1

( )

( )
X Y

t
r

df t




 


Z




with 1
1

1

( )
( )

t
se






  

and df=degrees of freedom=number of observations−number of covariates in Z−3 (acounting for 

the intercept, X,  and CV).  Note also that 2ˆ ˆ 1Y Y YR   |Z Z , and 2ˆ ˆ 1X X XR   |Z Z .  We also 
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note that in (8), for 1 1̂ 0   (consistent with positive bias in 1 ), the product rXꞏCV|ZrYꞏCV|Z 

must be positive. For situations in which 1 1̂ 0    (as in the empirical examples) the 

derivation applies except rXꞏCV|Z and rYꞏCV|Z take opposite signs.  

To satisfy (6b), the expression for the variance in Y explained by X and CV when all 

variables are conditioned on Z ( 2
|Y XCVR  Z ) associated with the model in (7) is  

2 2
| | | | |2

| 2
|

+ -2  

1
X Y Y CV X Y Y CV X CV

Y XCV
X CV

r r r r r
R

r
    







Z Z Z Z Z
Z

Z

 ,    (9)  

where the term 2
|Y XCVR  Z can be obtained from the specified value of RMAX and 2

YR Z . Specifically, 

the total variance explained ( 2
Y XCVR  Z ) is the variance explained in Y by Z ( 2

YR Z ) plus the 

proportion of variance not explained by Z 2(1 )YR  Z that is explained by X and CV ( 2
|Y XCVR  Z ):  

2
2 2 2 2 2

| | 2
(1 )

(1 )
MAX Y

Y XCV MAX Y Y Y XCV Y XCV
Y

R R
R R R R R R

R


    



     


Z

Z Z Z Z Z
Z

.   (10)  

Therefore, for specified values of 1̂  = β# and 2
Y XCV MAXR R Z  with |X Yr  Z and 2

YR Z obtained from 

observed data there are two expressions in (6) and two unknowns: rXꞏCV|Z and rYꞏCV|Z. 

To derive expressions for rXꞏCV|Z and rYꞏCV|Z, we begin by solving (9) for rYꞏCV|Z 

2 2 2
| | | | | |( )(1 )Y CV X Y X CV Y XCV X Y X CVr r r R r r        Z Z Z Z Z Z ,  (11) 

where the positive of the root is taken because rYꞏCV|Z must be greater than rXꞏY|ZrXꞏCV|Z to ensure 

that rYꞏCV|Z is positive. The expression in (11) reveals that for an observed value of the 

relationship between X and Y conditional on Z (rXꞏY|Z), and specified total variance explained 

 2
Y XCVR  Z  which determines 2

|Y XCVR  Z , the relationship between the omitted confound and Y 

conditional on Z (rYꞏCV|Z) is completely determined by the selection on unobservables (rXꞏCV|Z). 
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That is, selection on unobservables implies the specific relationship of CV to Y to satisfy (6a) and 

(6b).  

Then, to solve for rXꞏCV|Z, substitute the expression for rYꞏCV|Z from (11) into (8): 

 |
#

2 2 2
| | | | | |

1 2
|

( )(1 )ˆˆ
ˆ 1

X Y X CV X Y X CV Y X CV X Y X CVY

X X CV

r r r r R r r

r







       



        
 

Z Z Z Z Z Z Z|Z

|Z Z

, 

and solve for rXꞏCV|Z: 

|
#

#

| 2
2 2

| |
#

2

ˆ

ˆ

ˆ ˆ
2

ˆ ˆ

X
X Y

Y
X CV

X X
X Y Y X CV

Y Y

r

r

r R




 
 



 





  




 

|Z
Z

|Z
Z

|Z |Z
Z Z

|Z |Z

,   (12) 

where #
|

ˆ

ˆ
X

X Y
Y

r



  |Z

Z
|Z

is taken in the numerator to ensure a positive value of rXꞏCV|Z when rXꞏY|Z is 

greater than #
ˆ

ˆ
X

Y




|Z

|Z

;  there is positive bias in 1  due to the omission of CV.  Once rXꞏCV|Z is 

obtained in (12), rYꞏCV|Z can be obtained from (11) (or by solving [8] for rYꞏCV|Z). 

Thus (11) and (12) allow direct calculation of rXꞏCV|Z and rYꞏCV|Z from the quantities 1 , 

2
1 ˆ ˆse( ),  , ,  Y X X YR   Z
 , number of covariates, and n as well as the specified quantities #  and 

RMAX as in (6a) and (6b). Because the observed quantities are conventionally reported, one can 

apply the expressions to most published studies including any predictor X (continuous or binary) 

used in a linear model such as (1b). Expressions (11) and (12) then generate the exact values of 

rXꞏCV|Z and rYꞏCV|Z that produce the desired 𝛽መଵ ൌ 𝛽#  and R2 =RMax associated with model (1c).  
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Sensitivity: The Exact Coefficient of Proportionality, δ 

 To obtain the coefficient of proportionality from our derivations for rXꞏCV|Z we first obtain 

a general expression for rXꞏCV for any β# to be compared directly with RXꞏZ. We show in Appendix 

D that under the assumption that each element in Z is orthogonal to CV and that the elements of 

Z are orthogonal to one another (see Oster, 2019, page 192) 

#2
|

2
| 2

2 2
| |

# #
2

ˆ
1

ˆ
1

ˆ ˆ
2

ˆ ˆ

X
X X Y

Y

X CV X X CV

X X
X Y Y X CV

Y Y

R r

r R r

r R




 



 
 

 

  

  

 
   

   

 

|Z
Z Z

|Z

Z Z

|Z |Z
Z Z

|Z |Z

, and (13a) 

 2 2 2 2 2
| | | | | |1 1 ( )(1 )Y CV Y Y CV Y X Y X CV Y XCV X Y X CVr R r R r r R r r              Z Z Z Z Z Z Z Z  .  (13b) 

Then, using (13a), the coefficient of proportionality, δ, can be defined directly as: 3 

X CV

X

r

R
 




Z

.    (14) 

We now turn to a general verification of our approach and then present a specific example based 

on Oster (2019). 

VERIFICATION	OF	THE	DERIVATIONS	

Simulation Verification of the Derivations  

Verifying the expressions for rXꞏCV|Z and rYꞏCV |Z  
 

 
3 Following Cinelli and Hazlett (2020) we define selection by the zero-order correlation 
associated with the confounding variable: rX∙CV.  The logic is that because RX∙Z is not conditioned 
on other covariates neither should be rX∙CV when compared with RX∙Z. This generates a smaller 
value of δ (conservative) than using rX∙CV|Z which is less than rX∙CV as in (13b). 
 



Quantifying Sensitivity to Selection on Unobservables 

18 
 

We use simulation to verify the expressions for rYꞏCV|Z and rXꞏCV |Z in (11) and (12) across 

a range of scenarios. 4  The following elements were fixed for all scenarios: 

 σX =.5 (representing scenarios in which half the cases were assigned to a treatment); 

 σY=1.5 (i.e., specifically, we chose σY≠1 to demonstrate the results do not depend on 

standardization);  

 n=1000 (representing a moderately large sample but for which δ* might not yet have 

achieved asymptotic convergence); 

 seven covariates consistent with Oster’s Table 3 (age, child female, mother Black, 

mother age, mother education, mother income, mother married). 

 Se( 1 ) was set such that RXꞏZ took a minimum value of .1 occurring when 2 .1Y XR  Z .  

Specifically, Se( 1 )=0.179 which results in RXꞏZ = .1 given σX =.5, σY=1.5, and 

n=1000, see expressions (C2) and (C3);   

The key components to vary were the specified threshold value, β#; 
2
Y XR  Z (Oster’s R ); and

1 , the estimated effect of X in the intermediate regression in (1b) that does not include the 

omitted confounding variable (CV);. Specifically, we generated  

 threshold values: β#=.1 and β#=0 (2 conditions); 

 2
Y XR  Z (R ) ranged from .1 to .7 by increments of .2 (4 conditions);   

o 2
Y XCVR  Z  (Oster’s RMax) was set equal to 21.3 Y XR  Z  as per Oster’s guideline. 

 
4 All analyses conducted with this R code: 
https://www.dropbox.com/s/kva2t6bxsekz2wt/generating%20regression%20coefficient%20implied%20by%20Oster%
20delta%20from%20estimated%20effect%20simplify%20oster%20delta%20confirmed%20reduced%20with%20oster%
20regression%20adding%20plots%20redo%2011%2013%2022%20fiddle.R?dl=0 
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 1  ranged from 0.179 (Se[ 1 ]) to 1.379  by increments of .3 (σY /5=.3) (5 

conditions).  

 

The combinations of conditions produced 2x4x5=40 scenarios to evaluate the derivation.  

Four scenarios were removed because 2
Y XR  Z < 2

|Y Xr  Z , resulting in 36 scenarios. 

For each scenario rYꞏCV|Z and rXꞏCV|Z were calculated as in (11) and (12) with

1
| 2

1

( )

( )
X Y

t
r

df t




 


Z




, where df=n-7-3. The term RCVꞏZ was fixed at zero as in the derivation. 

Then 1 was estimated using (8) and R2 using (9) as a function of rYꞏCV|Z, rXꞏY|Z and rXꞏCV|Z. Results 

were confirmed with the Lavaan procedure in the statistics package R (see appendix E for a 

specific example).   

As shown in Figure 1, the expressions for rXꞏCV|Z and rYꞏCV|Z in (11) and (12) generated the 

values of 1̂  and 2
Y X CVR  Z specified as in (6a) and (6b) associated with model (1c).  Specifically, in 

Figure 1 the realized values of 1̂  were all within .000001 of the specified values of zero or .1.  

Similarly, in Figure 2 the realized values of 2
Y X CVR  Z were all within .000001 of the specified 

values of RMax (represented by the darkness of the data points).  
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Figure 1. Exact Value of 1̂  Generated through Correlations Associated with the Omitted 

Variable 

 

 

 

Figure 2. Exact Value of R2 Generated through Correlations Associated with the Omitted 

Variable 
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Empirical Verification of Low Birthweight and Premature Status on IQ5 

For the illustrative example, Oster (2019) reports the estimated effect of low birthweight 

and preterm on IQ is 1 .125  , standard error of .05, and 2R of .251. Supplemental materials 

in Oster (2019) indicate ˆ .991Y   and ˆ .217X  .  The supplemental materials for Oster (2019) 

also indicate the sample size for IQ is 6962 while the sample size for low birth weight and 

preterm is 6174, with the difference presumably due to missing data. We use the sample size of 

6174 assuming listwise deletion. Larger sample sizes increase RXꞏZ and therefore decrease δ, 

creating a greater difference between δ and δ*.6 The corresponding degrees of freedom are 6174-

7-3=6164, accounting for the seven covariates used in Oster’s model 1b and the intercept, the 

estimated effect of X, and the CV.   

Our correlational framework reveals an important aspect of the example of low birth 

weight and preterm on IQ. Based on expression C2, the reported quantities ( 1 .125   , 

standard error =.050, 2R = .251, ˆ .991Y  , ˆ .217X  , df=6164) imply that 2
XR Z  < 0 and RXꞏZ is 

undefined. This is a result of rounding.  Specifically, the smallest value of the standard error (to 

five digits after the decimal) that could be rounded to.050 and produce 2
XR Z >0 is .05034 which 

would produce 2
XR Z =.000115.  Note that this corresponds to a substantively insignificant level 

 
5 Results can be obtained in R using the following commands: install.packages("devtools") 
devtools::install_github("jrosen48/konfound") 
library(konfound) 
pkonfound(est_eff = .125,  std_err = .05049, n_obs = 6174,  n_covariates = 7, sdx = .217,  sdy = 
.991, R2 = .251, eff_thr = 0, FR2max = .61, index = "COP", to_return = "raw_output") 
or in Stata: test_cop 0.125 0.05049 6174 7 0.217 0.991 0.251, fr2max(0.61) 
or using the konfound-it app or on the  konfound-it spreadsheet.  
6 If n=6300, δ* =1.37, an order of magnitude larger than the true value (δ=.12) instead of twice 
the value of δ=.583as reported below. 
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of selection on observables on which to assess the robustness of the estimated effect.  Therefore, 

we use 1( )se  =.05049 , the maximum value (to five decimals) that could be rounded to 

1( ) .050.se     Even using 1( )se  =.05049 generates 2
XR Z =.006 with the covariates still 

explaining less than one percent of the variance in X. This preliminary calculation of the value of

2
XR Z implied by reported quantities demonstrates the importance of conceptualizing the 

coefficient of proportionality in terms of correlations. 

Obtaining rXꞏCV|Z and rYꞏCV|Z to produce for specified values of 1̂  and 2
Y XCVR  Z  

Oster (2019) specified 1̂ = β#=0 and 2
Y XCVR  Z =RMax=.61 for the inference of an effect of 

low birthweight and preterm on IQ. To satisfy these conditions, we start by obtaining 

1
| 22

1

( ) 2.476
.032

6164 2.476( )
X Y

t
r

df t




   


Z




, 

where 1

.125
( ) 2.476

.05049
t    , and 

2 2 2
2

| 2 2

.61 .500
.480

(1 ) (1 .500 )
Y XCVZ Y

Y XCV
Y

R R
R

R
 




 
  

 
Z

Z
Z

, 

where .500YR  Z is obtained in Appendix C. 

Then using (12) to obtain rXꞏCV|Z for a threshold value of β#= 0 (using | 1 |): 

#

# #

|
|

| 2 2
|2 2

| |2

ˆ

ˆ .032
.045

.480ˆ ˆ
2

ˆ ˆ

X
X Y

Y X Y
X CV

X X Y X CV
X Y Y X CV

Y Y

r
r

r
R

r R




 




 







 
  


   

 

|Z
Z

|Z Z
Z

|Z |Z Z
Z Z

|Z |Z

. 

And from (11)  
2 2 2

| | | | | |

2 2

( )(1 )

(.032)(.045) (.480 .032 )(1 .045 ) .693.

Y CV X Y X CV Y XCV X Y X CVr r r R r r        

    

Z Z Z Z Z Z
 

Note that 
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2 2

2 2

ˆ ˆ1 1 .500 .991 .858,  and

ˆ ˆ1 1 .078 .217 .216.

Y Y Y

X X X

R

R

 

 





    

    

|Z Z

|Z Z

 

Therefore, from (8) 

| #| |
1 2 2

|

ˆ .858 .032 (.045)(.693)ˆ 0
ˆ 1 .216 1 .045

Y X Y X CV Y CV

X X CV

r r r

r





  



 
   

 
|Z Z Z Z

|Z Z

. 

The result holds (regardless of ˆ ˆ and Y X |Z |Z ) because rXꞏY|Z - rXꞏCV|Z rYꞏCV|Z=  

0.03151536−(.0454969)(.6926925)=0, where we provide extra significant digits to verify the 

result.  Note that for β#=0, rYꞏCV|Z could be directly obtained as: rYꞏCV|Z = rXꞏY|Z /rXꞏCV|Z. 

Note this is presented for rXꞏY|Z>0.  Because 1 is negative (the estimated effect of low 

birthweight and preterm is negative on IQ), rXꞏCV|Z and rYꞏCV|Z would have to take opposite signs. 

The combined R2 is  

2 2 2 2 2 2
|(1 ) .500 (1 .500 ).480 .61Y XCV Y Y Y XCVR R R R         Z Z Z Z .  

 
This verifies in one empirical example that the expressions in (11) and (12) generate the 

specified values of 1̂ =0 and 2 .61Y XCVZR    for model (1c).  

For completeness,  

2
|

1 2 2
|

1 1 1 .480 1ˆ( ) .009
1 6264 1 .045

Y XCV

X CV

R
se

df r
 



 
    

 
Z

Z

. 

Note that the standard error would have to be corrected for the number of covariates in Z that are 

included in model (1c). The values generated here are confirmed with the Lavann procedure in 

Appendix E. 

Obtaining the coefficient of proportionality 
 

To obtain the coefficient of proportionality, start with 

2 2
|1 1 .078 .0455 .0454X CV X X CVr R r      Z Z , 
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with extra digits provided to differentiate the unconditional from the conditional correlation. This 

expression already allows a direct evaluation of the robustness of the inference – a fairly small 

correlation of rXꞏCV=.0454 between an omitted variable and low birthweight and preterm would 

reduce the estimated effect to zero, indicating the inference is not highly robust. 

To generate R2=.61 for rXꞏCV=.0454, 2 2
|1 1 .500 .691 .599Y CV Y Y CVr R r      Z Z  (again noting 

that rXꞏCV and rYꞏCV would take opposite signs because 1 0  ). 

The value of δ corresponding to rXꞏCV=.0454 is (from Equation 14) 

.0454
.583

.078
X CV

X

r

R
 



  
Z

. 

That is, selection on unobservables would have to be about 58% that of the very modest selection 

on observables (RXꞏZ=.078) to reduce the estimated effect of low birth weight and preterm on IQ 

to zero.  

To further evaluate the implications of using δ*, we solve (14) for rXꞏCV and replace δ with 

δ* yielding (see Appendix F): 

*
X CV Xr R  Z . (15) 

In the empirical example, using the unrestricted estimator, * 1.343(.0778) .104X CV Xr R   Z  with 

corresponding rYꞏCV=.599 (with opposite signs) from (13b) ensuring RMax=.61.  Using these 

values and the Lavaan procedure in the R software, 1̂  =-.164 for model (1c). That is, the value 

of δ* larger than δ reduces 1̂  below the specified threshold of β#=0. This is consistent with δ* 

overstating the robustness of the inference; δ* need not be as large as 1.343 to reduce 1̂ to zero. 

In the empirical example, both the Restricted (1.365) and Unrestricted (1.343) estimators 

for δ* are greater than 1 (the rule of thumb value for robustness) and yield 1̂   <0 while the exact 
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value of δ=.583 is less than one and yields 1̂  =0.   However, again we note that our correlation-

based approach reveals that the value of the coefficient of proportionality is sensitive to 

difference in RXꞏZ especially for low values of RXꞏZ. Consequently, these qualitative differences 

may depend on choice of rounding. For example, using a value of se( 1 )=.05034 would a very 

small value of RXꞏZ==.0107 and therefore a large value of δ, 4.259).  Nonetheless, the simulations 

demonstrate that δ* can depart considerably from δ and produce 1̂  <0 independent of rounding 

in reported values.7 

 

EVALUATION	OF	δ*		
 

Evaluation of δ* through Simulation 

From (15), for a specified value of δ* and observed RXꞏZ, one can calculate rXꞏCV.  In turn, 

one can obtain rYꞏCV from (13b) generating the sufficient statistics necessary to estimate 1̂ as in 

(1c).8,9  We apply this approach to evaluate δ* based on the Unrestricted Estimator as in (5) 

which requires fewer assumptions and is more accurate than the Restricted Estimator, drawing 

on the same scenarios used to verify rXꞏCV|Z and rYꞏCV|Z in Figures 1 and 2.  

 
7 Oster (2019) refers to an external study (Salt & Redshaw, 2006) consistent with the 

interpretation of a robust inference of an effect of low birthweight and premature status on IQ, 
but this validation is based on a synthesis of only observational studies since one cannot 
randomly assign infants to be premature or low birthweight. Therefore, a bias free comparison is 
not feasible.  
8 We use the unconditional rXꞏCV and rYꞏCV instead of the conditional rXꞏCV|Z and rYꞏCV|Z because 
Oster’s (2019) derivation is a function of a baseline regression which is not conditioned on Z. 
9 Oster provides no direct verification of (15) or (16) for δ* in terms of estimates of β1. 
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Corresponding to Oster’s (2019) derivation, we use an unconditional baseline model in 

which 1 was set to be rXꞏY (σY/σX) and 2
X YR r  . 10 As shown in Figure 3, when calculated over 

the simulated scenarios, Oster’s δ* produces many 1̂  considerably less than zero. In these cases, 

δ* is larger than necessary to reduce 1̂ to the threshold value (of zero), ultimately inflating the 

expression of robustness.  Consider the value of δ* of 1.04 (for which 1̂ =-.217) associated with 

δ =.65 (for which 1̂ =0), resulting in an overstatement of the robustness of inference by a factor 

of 60%: (1.04-.65)/.65=60%. That is, using δ* one would believe that selection on unobservables 

must be 1.04 (104%) that of selection on observables to reduce 1̂ to 0, when in fact selection on 

unobservables must be only .65 (65%) that of observables to reduce 1̂ to 0. This example is not 

unusual. More than 75% (28/36) of the 1̂ in Figure 3 are negative using δ.  Moreover, none of 

the 1̂ are within .01 of zero when 1̂ is obtained based on δ*. Note that because equation (13b) 

determines the specific rYꞏCV to satisfy condition 6b given any rXꞏCV, the realized 2
Y X CVR  Z based on 

δ* is exactly the specified Rmax (as was the case for Figure 2 for the exact value of δ). 

  

 
10 The term rXꞏY is obtained as in Appendix A. Results would be very similar if we set 1 =( rXꞏY 

+.05) (σY/σX) and 2( .05)X YR r   reflecting some practice in which the baseline model includes 

some covariates. 
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Figure 3. Value of 1̂ implied versus Oster’s Approximate Coefficient of Proportionality δ* 

 

 

To further explore the properties of δ*, we note that the inaccuracy of δ* is related to 1 1    

as shown in Figure 4. For small changes in 1 1   , 1̂  is positive, indicating that δ* was too 

small, understating the robustness of the inference.  As 1 1    increases, 1̂  decreases, with a 

strong negative trend (correlation of -.45).  This is of concern because when 1̂  is less than zero 

δ* is too large, overstating the robustness of the inference.  In general, δ* is overly responsive to 

changes in 1  from (1a) to (1b) -- ( 1 1   ).  This is inherent in the conceptualization of 
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coefficient stability (Oster, 2019); unstable coefficients are indicative of an inference that is not 

robust. 11 

 

Figure 4. Value of 1̂ versus Change in Estimated Effect with Observed Covariates ( 1 1   ) 

Implied by Oster’s Approximate Coefficient of Proportionality δ* 

 

 

To more fully evaluate the implications of Oster’s (2019) approximation δ*, we compare 

δ* with δ in the simulated scenarios in Figure 5. About 89% (32/36) of the points are above the 

45-degree line, indicating δ* characterizes the inference as more robust than it is according to the 

 
11 Within large values of RXꞏZ, the trend is opposite.  For RXꞏZ=.82, as δ* increases 1̂ increases 

and approaches zero. This is part of the mechanism by which δ* is asymptotically correct 

because RXꞏZ increases with sample size, all else being equal. 
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true δ.  Generally, for larger original observed R from the intermediate model in (1b), δ* is more 

likely to overstate the robustness of the inference. In particular, in the light shaded green box δ* > 

1 but the true δ <1.  In these cases, one would infer from δ* that the estimate of β1 is robust 

(Oster, 2019, page 195, uses a threshold of δ*=1 to define a robust inference) but not so from δ 

(as in the example of the inference of an effect of low birthweight and preterm on IQ). 

 

Figure 5. Oster’s Approximate Coefficient of Proportionality δ* by Exact Coefficient of 

Proportionality δ 

Analytic Evaluation of δ* Relative to  δ 

  

To analytically compare δ* with δ we begin with the intuitive expression for the 

Restricted Estimator for δ* and simplify by considering the threshold β#=0: 

* 1
1

1 1 1 1

 =  
( )( )( ) ( ) MaxMax

R R R R

R RR R

 
   

    
         

   
     .  (16) 
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To compare with the expression for δ when β#=0, we note from (13a) 

1
|2 2 2

| 2 2 2
|

ˆ
ˆ

1 1 (1 )

X

X Y Y
X CV X X CV X X

Y X CV Max Y

r
r R r R R

R R R




    

  

 
 
      
 
 
 

Z
Z Z Z Z

Z Z


 . (17) 

Substituting the expression for rXꞏCV in (17) into (14): 

1 12 2

2 2 2 2

ˆ ˆ
ˆ ˆ(1 ) (1 )

  

X X

X Y X Y

X XY X CV Y Max Y

R R

R RR R R R

  
   

   

   
        
    
   
   

Z Z

Z ZZ Z Z

 
.  (18) 

Both the expression for δ* in (16) and the expression for δ in (18) are proportional to 1 -- 

intuitively, the larger the estimated effect in model (1b) the more robust the inference. Both are 

also inversely proportional to the extra variation in Y accounted for by the unobserved covariates 

(Rmax). The smaller the increase in variance explained in the hypothetical final model (1c) 

including the unobserved covariate, the more robust the inference because it suggests that the 

observed covariates are not impactful. One distinction is that (16) evaluates Rmax relative to R , 

the variance in Y explained by Z and X  while (18) evaluates Rmax relative to 2
YR Z  (the variance 

in Y explained only by Z).  

The greatest distinction between (16) and (18) is how they incorporate information about 

the strength of the covariates. Specifically, the expression for δ* in (16) is inversely proportional 

to 1 1   , the change in estimated effect when observed covariates are added to model (1a) to 

generate model (1b). The stronger the observed covariates in terms of reducing the baseline 

estimated effect in (1a), the less robust the inference from (1b).  The intuition is that if observed 

covariates account for much of the estimated effect then the same will be expected for 

unobserved covariates because the observed covariates represent the unobserved covariates (see 
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also Altonji, Elder and Tabor, 2005, pages 169-170).  Therefore, the inference is more robust 

when the observed covariates are relatively weak.  

In comparison to (16), the expression in (18) is a direct function of the association 

between Z and X and not a function of 1 - 1 relative to R R  . Simply put, the stronger the 

selection on observables (RXꞏZ) the weaker must be the proportional selection on unobservables 

(rXꞏCV) to reduce 1̂ to zero. In this way interpretation of the inference is based only on selection 

on unobservables relative to the observables included in model (1b); the expression in (18) does 

not depend on coefficient stability relative to the baseline model (1a). This is the advantage of 

the static conceptualization of estimation of models (1b) and (1c) in terms of a correlation or 

covariance matrix (see Appendix A) instead of the dynamic conceptualization that depends on 

coefficient stability relative to a baseline model. 

The reliance of δ* on a baseline model opens the general analytic question of how one 

should choose the covariates to be in baseline model.  Oster (2019) does not include baseline 

covariates in the derivation of δ* but includes some covariates in baseline models in empirical 

examples. Furthermore, when baseline covariates are included, it is not clear if they should 

include fixed effects.  Oster (2019) did not include sibling fixed effects in baseline models, while 

Redding & Grissom (2021) included fixed effects for students in their baseline models.  Thus, δ* 

requires interpreters of an inference to adjudicate the choice of baseline and final covariates in 

models (1a) and (1b) while interpreting δ*.  In contrast, interpretation of δ does not require 

consideration of how model (1b) emerged from (1a). 
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BOUNDING	OF 1̂ 	
  

An alternative way of expressing the sensitivity of an inference is to generate a bound for 

the estimated effect. Indeed, many of the applications of Oster (2019) employ such bounding. 

We develop bounds for 1̂  under the condition that selection on unobservables is the same as that 

for observables: rXꞏCV= RXꞏZ (maintaining the assumption RCVꞏZ=0).  Under these assumptions, 

(11) and (12) become: 

2
| 2 2

| | | 22
( )(1 )

11

X Y X X
Y CV Y XCV X Y

XX

r R R
r R r

RR

  
  



   


Z Z Z
Z Z Z

ZZ

, and  (19a) 

| 21
X

X CV

X

R
r

R









Z
Z

Z

. (19b) 

Then substituting from (19a) and (19b) into (8) and simplifying: 

2
| 2 2

| | | 22 2
|

1 2
|

2

2 2
| | |

| 2
|

( )(1 )
1ˆ 1 1ˆBound( )

ˆ
1

1

ˆ ( )
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ˆ 1 2
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
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  
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Z ZZ Z
Z Z Z

ZZ ZZ

ZZ
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Z Z

 

The applies for 1 >0; the sign for Rx∙z is reversed for 1 <0. 

For the negative estimated effect of low birth weight and preterm on IQ, 

2

1 2

(.479 .032 ).858ˆBound( ) .032 .078 .090
.216 1 2(.078 )


 

      
. 
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That is, 1̂ would be slightly positive if selection on unobservables were equal to selection on 

unobservables. This is consistent with the value of δ =.583, that selection on unobservables need 

be only 58% that of observables to make 1̂ =0. 

Using the same approach, the bound for the estimated effect of smoking on low 

birthweight is −69.0396.  That is, even if selection on unobservables were as strong as selection 

on observables the estimated effect would be negative. This is consistent with δ needing to be 

greater than one (δ =1.627) to reduce the estimated effect to 0. 

 

DISCUSSION 

  

Beginning with inferences about the effects of smoking on lung cancer (Cornfield et al., 

1959), sensitivity analyses have been key to informing debates about causal inferences. In that 

context, Oster (2019) highlights the explanatory power of a model (R2) in contextualizing the 

robustness of an estimated effect to unobserved variables. It is reasonable to consider that there 

are limits on the amount of variance that can be explained in a given study, which should be 

accounted for in assessing how strong selection on unobservables must be to change an 

inference. In this study, we have drawn on Oster’s intuition to generate expressions for 

correlations associated with an unobserved covariate that reduce an estimated effect to a specific 

threshold (e.g., β#=0) in an estimated model with a specified maximum R2. In contrast to Oster’s 

original approximation, our derivation is exact, does not depend on the choice of the baseline 

model defining coefficient stability, and generates expressions of the omitted variable that can be 

evaluated in the absolute terms of a correlation coefficient.  We verify our derivation in an 

empirical example and through simulation. Furthermore, our expressions can be directly 
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calculated from conventionally reported quantities (e.g., 1 , se[ 1 ], ˆ X , ˆY , n, number of 

covariates, and 2
YꞏXR Z ) and can also be used to bound the final estimated effect if an omitted 

variable were included in the model. 

We emphasize that the derivation presented here yields the exact conditions that produce a 

specified estimated effect and R2, whereas Oster’s (2019) approach gives only an approximation. 

Specifically, compared to the exact solution for the coefficient of proportionality (δ), we show 

Oster’s δ* can overstate or understate robustness in empirical examples and through simulation. 

The approximation δ* is most likely to overstate the robustness of an inference for strong designs 

in which the observed covariates account for a large change in an estimated effect from the 

baseline model which is a by-product of the conceptualization of robustness in terms of 

coefficient stability (Oster, 2019). 

Best Practices  

Make Maximal use of Observed Covariates and Analytic Techniques (adapted from 
Frank et al., 2022) 

 

All sensitivity analyses assume that models have already been developed appropriately 

and are inclusive of alternative explanations represented by observed variables –Stated plainly, 

the first best practice is that any sensitivity analysis should only be conducted after a 

researcher has fully specified a model including all relevant and available measures. This 

especially applies to leveraging longitudinal data whenever possible (e.g., Shadish, Clark, and 

Steiner, 2008; see the review in Wong, Valentine, and Miller-Bains, 2017). See also recent work 

by Belloni et al., (2016), Young and Holsteen (2017) and Young (2018) regarding model 

selection. It is misleading to apply any sensitivity analyses to models that have not already 
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been rigorously vetted given the available data. But once the best models have been estimated 

and adjudicated, there may still be concerns about potential bias due to selection on 

unobservables.  Debate about such concerns can be informed by calculating the coefficient of 

proportionality.  

Carefully Examine Extent of Selection on Observables 
 

A by-product of our conceptualization of selection in terms of correlations is a preliminary 

calculation of the correlation between observed covariates and the predictor of interest.  We 

caution against over interpretation of proportional selection when selection on observed 

covariates is less than .05. Indeed, such a small correlation undermines the premise of using 

selection on observables to represent the likely selection on unobservables (e.g., Oster, 2019, 

pages 195-196). In such cases, one might simply report the correlation associated with the 

omitted variable necessary to produce the specified R2 and estimated effect without expressing as 

a ratio to selection on observed covariates. 

 

Consider a Minimum Value of the Maximum R2 
 

In deriving our expression for δ we adopted Oster’s (2019) emphasis on realistic expectations 

for variance explained – 2
Y X CVR  Z or RMax.  Oster establishes a guideline for 21.3Max Y XR R  Z based 

on the finding that most (97%) inferences from the randomized studies analyzed would have 

withstood a value of 21.3Max Y XR R  Z .  While we accept Oster’s logic and empirical validation, 

we note that small values of 2
Y XR  Z could generate unrealistically small values of RMax, leading the 

inference to be overstated (the larger the value of RMax, the smaller the δ indicating a less robust 

inference). In particular, one might consider an absolute minimum RMax of .1. 
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CONCLUSION 

 

The coefficient of proportionality informs debate about causal inferences by quantifying 

how strong selection on unobservables must be relative to observables to change an inference. 

By recognizing the importance of variance explained by a model, Oster (2019) accounts for the 

data collected and used in social science. We refine Oster’s (2019) contribution to the coefficient 

of proportionality by deriving the exact conditions associated with unobservables that would 

generate an estimated effect at a specified threshold and associated with a specified R2, and 

provide an expression for the coefficient of proportionality that can be used for any sample size.  

Ultimately, our intent is to inform causal inferences in public policy drawn from 

nonexperimental studies. But we emphasize sensitivity analyses do not, in and of themselves, 

establish the quality of a model or change an inference. What sensitivity analyses can do is 

formalize and quantify the hypothetical conditions necessary to change an inference to inform 

debate about that inference. 
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Appendix	A:	Regenerating	Oster’s	Validation	of	the	Coefficient	of	Proportionality	
 

We replicated Oster’s (2019) validation of the estimator in (3) by simulating cases based 

on the information provided in the caption below Figure 2 in Oster (2019, p. 195) and *
1  as in 

(3).  To begin, Oster defines W1 as a linear combination of two orthogonal observed covariates: 

W1=100Z1+200Z2. 

In Oster’s specification 
1 2

2 2ˆ ˆ 1Z Z   (where 2̂  represents a sample variance). Therefore 

1

2 2 2ˆ 100 (1) 200 (1) 50000W    . Also in Oster’s specification, 
1 2

ˆ ˆ .1X Z X Z    , where ˆ X   

represents a sample covariance with X. Therefore 
1

ˆ 100(.1) 200(.1) 30X W     , noting Z1 and Z2 

are orthogonal. Note also that the specifications translate to a modest correlation (
1X Wr  ): 

1

1

1

ˆ 30
.134

ˆ ˆ (1)(223.6)
X W

X W
X W

r

 


    . 

Oster then specifies 2ˆ 250,000CV  , where CV represents an unobserved confounding variable 

(W2 in Oster’s notation). And because δ=1 

1 1

1 1

2
2 2 2

ˆ ˆˆ 30
ˆ ˆ 250000 150

ˆ ˆ ˆ 50000
X W X WX CV

X CV CV
W CV W

   
  

 
     . 

The above specifications culminate in the covariance matrix 

1

1

                                   

          1         30        150      0

       30   50000            0       0

      150        0  250000       0

            0          0            0    

X W CV e

X

W

CV

e    1

 
 
 
 
 
 
  

,    

from which we generated 1,000 cases. For each case we generated  

1 1Y X W CV e     (A1) 
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where the e ~ N(200,1) and are orthogonal to W1 and CV.12 Then β1 in (A1) was estimated for 

each case. 

Using the above procedure, Figure 1a (on the left) closely reproduces Oster’s Figure 2b 

(on the right).  Specifically, each distribution is centered at the data generating value of β1=200.  

The standard deviation of the estimates (the standard error) is about 13 with 95% of the estimates 

falling between 172 and 224, less than .05 of a standard deviation of Y. We also note that the 

Restricted Estimator in (3) generates estimates that are approximately normally distributed 

(which Oster notes can be leveraged as a basis for inference).  Most importantly, the replication 

demonstrates that Oster’s derivation can be expressed in terms of a static covariance matrix 

representing the relationships among X, Y, and Z.   

Figure 1A. Regenerating Oster’s Validation of the Estimator for β1 

  

Note. Figure 1b is Figure 2b in Oster (2019).   

 

12 
2

1 1 1 1 1 1 1

2

( ) ( ) ( ) ( ) 2 Cov( , )+Var(CV) 2 Cov( , )+Var( )

200 50000 2(200)(30) 250000 2(200)(12) 1 412001.

Var Y Var X W CV e Var X Var W X W X CV e          

      
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To evaluate the asymptotics of the estimator in (3) we simulate 1,000 cases each for 

sample sizes of 500, 1,000, 5,000, and 10,000.  The results in Figure 2 show the estimator in (3) 

is not precise for small n.  For example, 25% of the *
1  for sample size of 1000 are below 173 

and 25% are above 226, roughly tripling the interquartile range for n=10000, for which 25% of 

the *
1  are below 190 and 25% are above 207.  

 

Figure 2A. Asymptotic Performance of Oster’s Estimator for β1 
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Appendix	B:	Application	to	multiple	unobserved	covariates	

 

To evaluate whether the correlations associated with a single unobserved variable can 

represent multiple unobserved variables, we begin by considering a model in which there are no 

covariates Z and we seek the conditions under which 

1 2 2

ˆ ˆˆ =
ˆ ˆ1 1

X Y X CV Y CV X Y X YY Y

X X CV X X

r r r r R R

r R

 
 

     

 

 


 
CV CV

CV

.   (B1) 

To evaluate (B1) we develop expressions for 2 2, and X YR R CV CV and compare the corresponding 

expression for 1 with a known expression for 1̂ from the right hand side of (B1) as a function 

of X and two covariates: CV=[CV1, CV2]). 

The expressions for 2 2, and X YR R CV CV are 

1 2

2 2
2 1 2 1 2 1 2

2

+ -2  

1
CV CV

X CV X CV X CV X CV CV CV
X

r r r r r
R

r


    
 

CV  , and
1 2

2 2
2 1 2 1 2 1 2

2

+ -2  

1
CV CV

Y CV Y CV Y CV Y CV CV CV
Y

r r r r r
R

r


    
 

CV . 

The expression for 1̂ is therefore 

1 2 1 2

1 2

2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 2

1
2 2

1 2 1 2 1 2
2

2
1 2

+ -2  + -2  

1 1
ˆ =

+ -2  
1

1

(1 )

CV CV CV CV

CV CV

X CV X CV X CV X CV CV CV Y CV Y CV Y CV Y CV CV CV
X Y

X CV X CV X CV X CV CV CV

X Y CV CV

r r r r r r r r r r
r

r r

r r r r r

r

r r

  



         


    

 

  
  
     

 
 
  




 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 2
1 2 1 2 1 2

+ -2 ( + -2 )
.   (B2)

1 +2

X CV X CV X CV X CV CV CV Y CV Y CV Y CV Y CV CV CV

X CV X CV X CV X CV CV CV

r r r r r r r r r r

r r r r r

         

    



 

 

A direct expression for 1̂ with two covariates is (Mauro, 1990, page 316): 
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2
1 2 1 2 1 2 1 2 1 1 2 2

1 2 2 2
1 2 1 2 1 1 2 2

2
1 2 1 2 1 2 1 2 1 1 2

(1 ) ( ) ( )ˆ
1 2

(1 ) ( ) (

X Y CV CV Y CV X CV CV CV X CV Y CV X CV CV CV X CV

CV CV X CV X CV X CV CV CV X CV

X Y CV CV Y CV X CV CV CV X CV Y CV X CV CV CV

r r r r r r r r r r

r r r r r r

r r r r r r r r r

          

     

        

    


   

   
 2

2 2
1 2 1 1 2 2

)
, (B3)

1 2
X CV

X CV X CV X CV CV CV X CV

r

r r r r r


    


  

  

assuming 2
1 2CV CVr  =0 because the unobserved covariates are orthogonal to each other. 

Expressions (B2) and (B3) are equivalent if     

 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2+ -2 ( + -2 ) ( ) ( ).  (B4)X CV X CV X CV X CV CV CV Y CV Y CV Y CV Y CV CV CV Y CV X CV CV CV X CV Y CV X CV CV CV X CVr r r r r r r r r r r r r r r r r r                       

Assume each covariate CV contributes equally to the correlations associated with X. 

Specifically, let 1 2X CV X CV X CVr r r    (i.e., each covariate is equally correlated with X) and 

1 2Y CV Y CV Y CVr r r     (i.e., each covariate is equally correlated with Y).  This is consistent with the 

assumption that the specific weights relating each element in CV to X and Y are not known, 

because the specific elements in CV are themselves not observed. 

The left-hand side of (B4) is then: 

 2 2 2 2
1 2 1 2 1 22 2 (2 2 ) 2 (1 )Y CV Y CV CV CV X CV X CV CV CV Y CV X CV CV CVr r r r r r r r r             . 

And the right-hand side of (B4) is: 

1 2 1 2 1 2( ) ( ) 2 (1 )Y CV X CV CV CV X CV Y CV X CV CV CV X CV Y CV X CV CV CVr r r r r r r r r r r                , 

and the equivalence in (B4) holds.   

More generally, if the elements in CV are orthogonal or have been orthogonalized to 

represent unique contributions to X and Y (cf. Oster, 2019, page 192) such that rCViꞏCVj =0 for all 

i≠j then for q elements in CV the left-hand side of (B4) reduces to 

 2 2 2 2 2 2
1 2 1 2... ( ... )Y CV Y CV Y CVq X CV X CV X CVq Y CV X CVr r r r r r qr r               , (B5) 

and the ride hand side of (B4) reduces to the same: 
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1 1 2 2 ...Y CV X CV Y CV X CV Y CVq X CVq Y CV X CVr r r r r r qr r            . 

Therefore, 1 2

ˆˆ
ˆ 1

X

X Y X YY

X

r R R

R






  



CV

CV CV
 under the assumptions that 

1 2 ...X CV X CV X CVq X CVr r r r       and 1 2 ...Y CV Y CV Y CVq Y CVr r r r        for all q orthogonal 

elements in CV.13 In summary, multiple unobserved covariates can be represented by a single 

covariate for which rXꞏCV =RXꞏCV and rYꞏCV=RYꞏCV under the assumption that the covariates are 

orthogonal to one another and each unobserved covariate is equally predictive of X and each is 

equally predictive of Y. 

 

  	

 
13 Note that the equivalence will also hold if each covariate is equally correlated with X and Y. 
That is, that 1 1 . 1 2 2 2,  and Y CV X CV CV Y CV X CV CVr r r r r r        . Cinelli and Hazlett (2020, page 51) 

make a similar assumption and Oster (2019, page 192) employs a similar but slightly weaker 
assumption in deriving the Restricted Estimator. But this assumption would force RCVꞏY=RCVꞏX, a 
highly restrictive condition. 
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Appendix C: Obtaining RYꞏZ, RXꞏZ and rXꞏY 

We develop our derivation for>0, with the case for<0 obtained by symmetry.   

Obtaining RYꞏZ 

From Cohen & Cohen (1983, page 143): 

2 2
2

| 2

2 2 2 2
| |

2 2
| |

1

 for 0. (C1)
(1 ) (1 )

Y X Y
X Y

Y

Y X X Y Y X X Y
Y

X Y X Y

R R
r

R

R r R r
R

r r

 




   


 






 
  

 

Z Z
Z

Z

Z Z Z Z
Z

Z Z

  

where 1
| 2

1

( )
,

( )
X Y

t
r

df t




 


Z




 with df=n-number of covariates -2 (for X and the intercept) and 

1
1

1

( )
( )

t
se






 .  Thus RYꞏZ can be calculated from reported quantities 1 1,  se( )   , n, number of 

covariates and 2
Y XR  Z  (the unadjusted R2 when regressing Y on X and Z).  

 

Obtaining RXꞏZ 

The expression for 1Se( ) from Cohen and Cohen (1983, page 109): 

2
,

1 2

1ˆ 1
Se( ) .

ˆ 1
Y XY

X X

R

df R












Z

Z

       (C2) 

Solving for RXꞏY|Z yields 

   
2 2 2 2

2 2
2 2

1 1

ˆ ˆ(1 ) (1 )
1 ,  for 1 0

ˆ ˆSe( ) Se( )

Y Y X Y Y X
X

X X

R R
R

df df

 

   
 



 
   Z Z

Z  
 .   (C3) 
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Note that all terms are positive, so the equalities hold. Therefore, RXꞏZ can be calculated from 

reported quantities 2
1 ˆ ˆse( ),  , ,  Y X X YR   Z
 and n.  Note that given RXꞏZ and ˆ X , one can also obtain 

Oster’s 2 2ˆ(1 )X X XR   Z . 

In summary, RXꞏZ, and RYꞏZ depend only on conventionally reported quantities ˆ X , ˆY  

and n and number of covariates as well as 1 , 1se( )  and 2
Y XR  Z .  That is, one does not need direct 

access to Z to generate the sufficient statistics associated with Z to estimate model (1b) in the 

main text. This allows one to apply the analysis in the derivation in the main text to any analysis 

that reports ˆ ,X ˆY , n and number of covariates as well as 1̂ , 1se( )  and 2
Y XR  Z

 as we do below. 

 

Obtaining rXꞏY 

 

Having obtained 2 2, and X YR R Z Z we seek to calculate rXꞏY. This is necessary only to 

calculate a baseline regression for Oster’s δ* in the simulated scenarios.  The term rXꞏY is not 

necessary to calculate the coefficient of proportionality, δ. In empirical examples rXꞏY can often 

be directly obtained from a reported zero-order correlation or from a baseline model in which no 

covariates are included.  But rXꞏY can also be calculated from 1 ˆ ˆ,  ,  , , and Y X X YR R    Z Z
 under 

the assumption 1 2 ...X Z X Z X Zr r r      and 1 2 ...Y Z Y Z Y Zr r r      for elements in all Z (see 

Appendix B). That is, if we do not have information about the specific covariates we assume 

they are equally weighted in predicting X and in predicting Y. Under this assumption  

 2
1 12

ˆ ˆ
= 1

ˆ ˆ1
Y X Y Y X X

X Y X Y X
X X Y

r R R
r R R R

R

  
 

  
   




   


Z Z

Z Z Z
Z

  .   (C4) 
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Numerical Example 

 

This example is taken from Oster’s (2019) analysis of low birth weight and preterm 

(LBW+Preterm) on IQ. 

Oster’s Table 3 shows: 

 

For the model in the second column with controls, the estimated effect of LBW+Preterm 

is -.125, with standard error of .050 and R2 of .251. The covariates include age, child female, 

mother Black, mother age, mother education, mother income, mother married. But the 

coefficients for the covariates are not reported.   

Descriptive statistics are reported in a supplemental file with ˆ .217X  and ˆ .991.Y   
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We note the discrepancy in sample sizes for IQ (6962) versus LBW + Preterm (6174), 

presumably because of missing data. We choose a sample size of 6174 assuming listwise 

deletion.  Note that larger sample sizes will produce smaller values of δ and a more extreme 

comparison between δ and δ* in the main text. For sample size of 6174, 2
XR Z  is very small and 

potentially less than zero depending on rounding of other reported values. In fact, for 1( )se 

=.050, 2
X ZR   is less than zero and RXꞏZ is not defined, and model (1b) cannot be estimated using 

conventional techniques. We note that when 2
X ZR  is small its calculation is very sensitive to the 

standard error (relative to 
ˆ

ˆ
Y

X




and for given sample size and 2R ). Specifically, if 1( )se  had 

been rounded from .05034 to .050 then 2
X ZR  would be .00011 with RXꞏZ =.0107. But such a small 

relationship between observed covariates Z and the predictor of interest X challenges the premise 

of using observed covariates as a baseline to evaluate unobserved covariates. Therefore, we set 

1( )se  =.05049, the largest possible value (to five decimals) that could be rounded to .050.   

Thus, we have: 

2
1 1 ˆ ˆ.125,  se( ) .050049,  .251, .217,  .991X YR          n= 6265 and number of 

covariates=7. 

To generate 2
YR Z  and 2

XR Z , begin with 

1

.125
( ) 2.476

.05049
t    , and 1

| 22
1

( ) 2.476
.032.

6174 7 2 2.4767 2 ( )
X Y Z

t
r

n t




   

    




 

Therefore, from (C1) 

2 2 2
|

2 2
|

.251 .032
 =.500 

(1 ) (1 .032 )
Y X X Y

Y
X Y

R r
R

r
 




 
 

 
Z Z

Z
Z

. 
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And from (C3) 

 
 

 
 

2 2 2

2 222
1

ˆ 1 .991 1 .251
1 1 .078.

.217 (6165) .05049ˆ Se( )

Y Y X

X

X

R
R

df



 




 
    Z

Z 
 

(Correspondingly for Oster’s δ*, 2 2 2 2ˆ(1 )  =(1 .078 ).217 .047X X XR    Z ). 

A regression following model (1b) in the main text can be recovered from the values for RXꞏZ and 

RYꞏZ as well as rYꞏX|Z obtained from 1( )t  above and ˆ X , ˆY , 2
Y XR  Z n, and number of covariates (q) 

as reported: 

2 2
|

1 | |2 2
|

ˆ ˆ 1 .991 1 .500
.032 .125

ˆ ˆ 1 .217 1 .078

Y Y Y
X Y X Y

X X X

R
r r

R

 


 


 



 
   

 
Z Z

Z Z
Z Z

 , 

2

1 2 2

ˆ 1 1 .991 1 .251 1
( ) .05049,  and

ˆ 2 1 .217 6174 7 2 1 .078
Y Y X

X X

R
se

n q R








 
      

     
Z

Z



 
2 2

|2 2 2
2 2

.032
.500 .251

1 1 .078
X Y

Y X Y
X

r
R R R

R


 


     
 

Z
Z Z

Z

 . 

These correspond to Oster’s originally reported values. 

Last, from (C4) 

   2 2
1

ˆ .217
1 .125 1 .078 (.078)(.500)=.066

ˆ .991
X

X Y X X Y
Y

r R R R
 
        Z Z Z

  

Correspondingly, the estimate of β1 from an unconditional model is
ˆ .991

r .066 .302
ˆ .217

Y
X Y

X


    

with R2 of .004.  

A regression for model (1b) including observed covariates based on zero-order 

correlations yields: 

1 2 2

ˆ .991 .066 (.078)(.500)
.125

ˆ 1 .217 1 .078
Y X Y X Y

X X

r R R

R




  



 
  

 
Z Z

Z

 , 
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2 2 2 2
2

2 2

2 .066 .500 2(.066)(.500)(.078)
.251

1 1 .078
X Y Y X Y Y X

X

r R r R R
R

R
    



   
  

 
Z Z Z

Z

  

2

1 2 2

ˆ 1 1 .991 1 .251 1
( ) .05049

ˆ 1 1 .217 6174 7 2 1 .078
Y Y X

X X

R
se

n q R








 
      

     Z

  

We verify the results by constructing the correlation matrix:  

            IQ      LBW     Z 

IQ       1         .0530  .5003  

LBW .0530     1        .0515 

Z       .5003   .0515    1   

 
 
 
 
 
 

. 

And then implemeting the Lavaan package in R: 

  

with  

2
2

2

.991 .735
.251

.991
R


   . 

These correspond to Oster’s originally reported values 2
1 1.125,  se( ) .050,  and .251.R        
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Appendix	D:	Obtaining	rX∙CV	and	rY∙CV	from	rX∙CV|Z	and	rY∙CV|Z	assuming	CV	is	Orthogonal	

to	each	Element	in	Z		

 

We show how to obtain rXꞏCV and rYꞏCV from rXꞏCV|Z and rYꞏCV|Z assuming the confounding variable 

CV is orthogonal to each element in Z.   

To begin, | 2 1| 2 1| 2 | 2
| 1 2 2 2 2

1| 2 1| 2 1| 2(1 )(1 ) (1 )

X CV Z X Z Z CV Z Z X CV Z
X CV Z Z
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   
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
 

  
,  

because rCVꞏZ1|Z2 =0 by assumption of orthogonality of CV with Z1 and Z2. And 

 2 2
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because rCVꞏZ2 =0 by assumption of orthogonality of CV with Z2.  

Note 

2
21 2 1 2 1 2 1 2

1| 2 1| 2 2 22 2
2 1 22 1 2
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Then 
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 

 

Applying the approach recursively:  
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| 2
.

1
X CV

X CV

X

r
r

R









Z

Z

 

This implies 

2
|1 .X CV X X CVr R r    Z Z

 

Analogously, 2
|1 .Y CV Y Y CVr R r    Z Z  
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Appendix	E:	Confirmation	of	the	recovery	of	 1̂ and	 2
|Y XCVR  Z 	from	

| | |,  , and X Y X CV Y CVr r r  Z Z Z 	

We present the case for 1 >0 with the case for 1 <0 obtained by symmetry. 

Calculations in the main text generate the following correlation matrix for β#=0 and 

RMax=.61. 

              IQ|     LBW|    CV|  

IQ|         1        .032      .693  

LBW|   .032      1         .045 

CV|      .693    .045      1   

 
 
 
 
 
 

Z Z Z

Z

Z

Z

. 

Using this correlation matrix a linear model Y|Z=β0+β1X|Z+β2CV|Z was estimated using the 

Lavaan procure in R.   

 

Note 1̂ =0.  Also, 2 2
| |ˆ1 1 .520 .480Y XCV Y XCVR      Z Z .  Therefore, the combined R2 is 

2 2 2 2 2 2
|(1 ) .500 (1 .500 ).480 .61Y XCV Y Y Y XCVR R R R         Z Z Z Z . Thus, the obtained values rXꞏCV|Z 

=.045 and rYꞏCV|Z =.693 (for RXꞏZ=.078 and RYꞏZ=.500) with rXꞏY|Z=.032 generate the specified 

values of 1̂ =β#=0 and 2 .61Y XCVZR    for model (1c).  
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Apendix	F:	Oster’s	definition	of	δ	
 

Oster (page 192) defines δ in terms of  

2
2

1 2 2
2 2

11 2
2
1

X

X X

X


     



   , (F1) 

where 1X is the covariance between X and the observed covariates represented by W1; and 2X

is the covariance between X and the unobserved covariates represented by W2, our confounding 

variable (CV).  The terms 2
1  and 2

1 are the variances of W1 and W2 respectively.  More 

specifically, W1 is defined as W1 =ΨZ and W2=CV from the following model (Oster, pages 191-

192): 

1 1 2 1 2Y X W W X W      ΨZ , 

where the absence of a coefficient associated with W2 implies the coefficient is 1. Most 

importantly, the implication of setting W1=ΨZ is that elements in Z representing selection on 

observables are weighted by their relationship to Y and that 2 2 2
1 | |Y X Y XR  Z because W1 is a 

predicted value (see also Altonji Elder & Tabor, 2005, page 175).  In these ways the relationship 

between Z and Y is taken into account in expressing the selection into X based on Z in (F1). 

Note that for a single Z, Oster’s definition of δ can be expressed as δ=γ2/γ 1 where γ 2 and 

γ 1 can be defined from: 

X=γ0+ γ1Z+ γ2CV.  

In this circumstance, δ can be expressed as  
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Z Z
2

2

ˆ ˆ
ˆ ˆ1

ˆˆ
ˆˆ 1

X CV CV XX X
X CV

CV CV Z CV X CV

X Z CV Z X CV XX X Z
X Z

ZZ CV Z

r r r
r

r r
r r r rr

r

 
  



  


 

   







  



,  (F2) 

assuming rCVꞏZ =0, and that the scale for the unobserved variable CV is chosen such that 

Zˆ ˆCV  .  Therefore, the expressions for δ in (F1) and (F2) differ only in how they weight the 

elements in Z, with Oster’s definition in (F2) weighting in proportion to contributions to the 

prediction of Y through W1= ΨZ and the definition in (F2) weighting in proportion to the 

contributions to X through RX∙Z. Note that Oster (page 192) assumes the contributions of Z to X 

and to Y are proportional to one another in deriving the Restricted Estimator, limiting the 

differences between the definitions in (F1) and (F2). 


