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A B S T R A C T   

Social scientists seeking to inform policy or public action must carefully consider how to identify 
effects and express inferences because actions based on invalid inferences may not yield the 
intended results. Recognizing the complexities and uncertainties of social science, we seek to 
inform inevitable debates about causal inferences by quantifying the conditions necessary to 
change an inference. Specifically, we review existing sensitivity analyses within the omitted 
variables and potential outcomes frameworks. We then present the Impact Threshold for a 
Confounding Variable (ITCV) based on omitted variables in the linear model and the Robustness 
of Inference to Replacement (RIR) based on the potential outcomes framework. We extend each 
approach to include benchmarks and to fully account for sampling variability represented by 
standard errors as well as bias. We exhort social scientists wishing to inform policy and practice to 
quantify the robustness of their inferences after utilizing the best available data and methods to 
draw an initial causal inference.   

1. Introduction 

If social science is to inform policy or public action (Burawoy, 2005), the social scientist must attend carefully to the basis for 
making causal inferences (e.g., Schneider et al., 2007). In Holland’s (1986) terms, manipulations based on incorrect inferences will not 
yield the intended results. But study findings can be ambiguous. Indeed, debate about the general bases for causal inferences in the 
social sciences dates back to the 1900s (e.g., Rubin, 1974; Thorndike and Woodworth, 1901; see Oakley, 1998 for review). 

Concerns about inferences from quasi-experimental studies come immediately to the fore. Consider research on the effects of 
kindergarten retention (not promoted to the first grade) on achievement in which social scientists have employed a variety of iden-
tification strategies to reduce the bias associated with selection into retention (e.g., Burkam et al., 2007; Eide and Showalter, 2001; 
Hong and Raudenbush, 2005). The controversy primarily concerns the internal validity of the results; despite controlling for back-
ground characteristics, how can we be certain that students who were retained are being compared with similar others? 

Sensitivity analyses are one of the key tools for expressing uncertainty of findings from quantitative studies. Initiated with Cornfield 
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et al.’s (1959) characterization of alternative factors that could account for the estimated effect of smoking on lung cancer, sensitivity 
analyses have a deep history in health and medicine (e.g., Baer et al., 2021; Brumback et al., 2004; Dorie et al., 2016; Frank et al., 
2021a,b; Gastwirth et al., 1998; Lash et al., 2009; Robins, Rotnitzky and Scharfstein, 2000; Rosenbaum and Rubin, 1983a,b; 
Scharfstein et al., 2021; Vanderweele and Arah, 2011; Vanderweele and Ding, 2017; Walsh et al., 2014; Walter et al., 2020) and have 
developed in economics (Altonji, Elder and Taber, 2005; Imbens 2003; Oster, 2019), political science (Acharya, Blackwell and Sen 
2016; Blackwell, 2014; Neumayer and Plümper, 2017; Plümper and Traunmüller, 2020), psychology (e.g., Fritz et al., 2016; Imai et al., 
2010a,b; Lin et al., 2022; Liu and Wang, 2020; Mauro, 1990), sociology (Diprete and Gangl, 2004; Frank, 2000; Frank and Min, 2007); 
education (Carnegie, Harada and Hill, 2016; Frank et al., 2013a,b; Rosenbaum, 1986), machine learning (Chernozhukov et al., 2021; 
Jesson et al., 2021; Kallus et al., 2019) and statistics (Cinelli and Haslett, 2020; Copas and Li, 1997; Franks, D’Amour and Feller, 2019; 
Hong, Yang and Qin, 2021a; Hong et al., 2018; Hosman, Hansen and Holland, 2010).1 The purpose of this paper is to make sensitivity 
analyses more useful for social science research and practice. We orient our discussion around two frameworks for sensitivity analysis, 
one that foregrounds omitted variables, and one that foregrounds potential outcomes. 

As an example of the first framework foregrounding omitted variables in the linear model, we generate statements such as “to 
invalidate an inference of an effect, an omitted variable would have to be correlated at __ with the predictor of interest and with the 
outcome” (Frank, 2000). This is known as the Impact Threshold of a Confounding Variable (ITCV). As an example of the second 
framework foregrounding potential outcomes, we generate statements such as “to invalidate the inference, _% of the cases would have 
to be replaced with counterfactual cases with zero effect of the treatment” (Frank et al., 2013a,b). This is known as the Robustness of 
Inference to Replacement (RIR) – see also Frank et al. (2021b). 

We present a full discussion of sensitivity based on omitted variables and replacement of cases approaches. This includes closed 
form expressions, applications, benchmarks, conditions to preserve standard errors, and in the discussion a comparison of the 
frameworks to each other and their use in conjunction with p-values and confidence intervals. Our goal is to provide a set of tools, 
representative of a large set of techniques, that are broadly applicable. As a set, the techniques presented here provide a more precise 
language for researchers to debate the strength of the evidence relative to concerns about potential violations of the assumptions of the 
inference. 

It is important to note that sensitivity analyses cannot substitute for the substantive issues of a debate about an inference in terms of 
the design of the study, relevant alternative explanations, and measures. But sensitivity analyses do inform debates about causal in-
ferences by quantifying the conditions necessary to change inferences. For example, instead of debating whether or not a variable has 
been omitted from an observational study (at least one most certainly has), one can debate about the properties required of the omitted 
variable necessary to change the inference. In this sense, sensitivity analyses provide accessible terms for stakeholders to weigh 
concerns about study design against the evidence supporting an inference. This is especially relevant for broadening discourse to 
include stakeholders from underrepresented groups who may hold less formal authority in a given policy context. 

We emphasize here that sensitivity analysis should not be used to buttress an otherwise weak model. Sensitivity analysis 
begins only after the analyst has presented and defended the strongest model or set of models for causal inference possible, given the 
data. The sensitivity analyses presented here are also not a substitute for examining the robustness of results to alternative specifi-
cations of models, estimation procedures, and measures using observed data and corresponding estimation techniques. Instead, the 
sensitivity analyses should be thought of as complementary techniques that examine the robustness of inferences to unobserved and 
hypothetical conditions that cannot be directly addressed with observed data. 

We also note that although in some of our derivations below we use a p-value as a threshold for inference, we do not take a specific 
level (e.g., .05) as hard and fast for making decisions. In fact, the very point of sensitivity analysis is to represent how much an estimate 
is above or below a threshold for making an inference, stimulating discussion around the uncertainty of inference. Ultimately our goal 
is to facilitate intelligent discourse (e.g., Black and Donald, 2001; Boltanski and Thévenot, 2006; Habermas, 1987; Weiss, 1977) that 
can inform action, contributing to pragmatic sociology, in which multiple stakeholders, from different backgrounds and with different 
interests, can assess when there is enough evidence to act. 

2. Background 

2.1. Control for confounders 

The primary challenge to a causal inference is usually made in terms of a confounder (Frank, 2000; Pearl, 2009; Wooldridge, 2010), 
defined as related to both the predictor of interest and the outcome, and causally prior to both. If a confounder is not accounted for then 
some or all of the association between the predictor of interest and the outcome could be attributed to the omitted variable. Corre-
spondingly, any inference about an effect of the predictor of interest on the outcome may be invalid. 

Consider the model 

Y = β0 + β1X + β2Z, (1)  

where Y is the outcome (or dependent variable), X is the predictor of interest (or independent variable), and Z is an observed 

1 See the reviews in Carnegie, Harada and Li (2017), Chernozhukov et al. (2021); Franks et al. (2019); Lash et al. (2009); Neumayer and Plümper 
(2017); Rosenbaum (2002, chapter 4) or for a software review see Kawabata et al. (2022). 
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confounder. For example, Y might be achievement, X kindergarten retention, and Z socioeconomic status which is related to both 
kindergarten retention and achievement and is causally prior to both. Any observed association between kindergarten retention and 
achievement that does not account for the confounder of socioeconomic status may lead to an overestimate and invalid inference of the 
effect of kindergarten retention on achievement. 

Most estimation techniques adjust for observed confounders in some way. Ordinary least squares estimates of models such as (1) 
adjust for confounding as a function of the correlation of the omitted variable with the predictor of interest and with the outcome. 
Propensity scores account for the relationship with the predictor of interest through matching, weighting, or stratification (Hong, 
2015; Morgan and Winship, 2007; Murnane and Willett, 2010; Rosenbaum and Rubin, 1983). New techniques either select from a 
range of possible models (Belloni et al., 2016) or average over sets of models (Frank et al., 2013a,b; Young and Holsteen, 2017). 
Instrumental variables leverage an alternative measure of the predictor of interest that is unrelated to confounders to reduce bias in 
estimation (e.g., Heckman, 2005; Wooldridge, 2010).2 While these techniques offer advancements over ordinary least squares esti-
mates of conventional linear models, they are functions of observed covariates only (propensity scores and model averaging)3 and 
instrumental variables are based on strong assumptions (e.g., the exclusion restriction and strong instruments – Wooldridge, 2010, 
page 102) that are difficult to satisfy in practice (Busenbark et al., 2021). 

2.2. The need for sensitivity analysis 

While the procedures for controlling for observed confounds or averaging across models have contributed greatly to our ability to 
estimate effects of specific parameters of interest, they do not pre-empt discourse about an inferred effect because they are functions of 
only the observed variables. Thus, there may be unobserved variables omitted from even the most sophisticated models that might 
account for any estimated effect. Anticipating that concerns about such omitted variables can never be resolved completely in an 
observational study, we turn to techniques for informing the discourse about such concerns by quantifying the conditions necessary to 
change an inference. 

Sensitivity analyses do not alter estimates or inferences; they inform our interpretation and ability to communicate the robustness 
of those inferences. For example, sensitivity analyses turn the challenge “But there may be an omitted variable that biases the esti-
mated effect of kindergarten retention on achievement” to statements about omitted variables such as “An omitted varable would have 
to be correlated at 0.36 with retention and with achievement to change the inference of an effect of retention on achievement.” Or 
sensitivity analyses can conceptualize bias in terms of changes in the data, producing statements such as “to invalidate the inference of 
a negative effect of kindergarten retention on achievement one would have to replace 85% of the cases with counterfactual cases for 
which there was no treatment effect.” 

The fundamental challenge is to express sensitivity in parsimonious and accessible terms that are nonetheless functions of the dual 
relationships associated with the confounder – the relationship with the predictor of interest and with the outcome. Early efforts 
treated these components separately. For example, for matched cases, Rosenbaum (2002, p. 114) shows that, “to attribute the higher 
rate of death from lung cancer to an unobserved covariate u rather than to the effect of smoking, that unobserved covariate would need 
to produce a six-fold increase in the odds of smoking, and it would need to be a near perfect predictor of lung cancer” (emphasis added). 

Advances in sensitivity analysis have extended early tabular forms (Mauro, 1990) to heat maps (Franks et al., 2019) and line and 
contour plots showing the combinations of the dual components of confounding that reduce an estimated effect to a specific (or 
multiple) thresholds (Carnegie et al., 2016; Cinelli and Hazlett, 2020; Dorie et al., 2016; Imbens, 2003; Middleton et al., 2016). While 
such visualizations are more efficiently informative than comprehensive tables, they still require interpreters of inferences to engage 
multiple conditions that could alter an inference. Any discourse requires simultaneously navigating up and down dual measures of 
association, decreasing the chances of coming to a shared understanding of the conditions that will change the inference. Therefore, in 
Section 3 we will present two approaches that express sensitivity as a single function of the two components of confounding, reducing 
ambiguity in the discourse about inferences. 

2.3. Relationship of sensitivity analyses to sampling variability 

Sampling variability is also a critical component of statistical, and causal inference. Sampling variability explicitly recognizes that 
specific results can change from sample to sample even when an underlying cause is present. For example, one may choose not to infer 
an effect unless the estimated effect is unlikely (e.g., p < .05) to occur by chance alone in samples from a population in which the null 
hypothesis is true. Implied by this statement is that sampling variability may be used to define a threshold for making an inference. For 
example, the inference is made when the ratio of an estimated effect to its standard error is greater than a critical value corresponding 
to a particular p-value (e.g., a tcritical value of 1.96 for a p-value of .05). 

In spite of the many critiques of p-values, and more generally of the null hypothesis significance testing paradigm (e.g., Harrington 
et al., 2019; Kraemer, 2019; Trafimow and Marks, 2015), p-values remain central to discourse about scientific findings (Goldfarb and 
King, 2016; McCann and Schwab, 2020). The standard error is critical in this discourse because it quantifies variability that can occur 

2 For introductions to instrumental variables techniques, see Murnane and Willett (2011), Chapters 10 and 11; Morgan and Winship (2007), 
Chapter 9; Wooldridge (2010), Chapter 5.  

3 Propensity score analyses also assume that there is a region of common support – that some who received the treatment had a relatively high 
propensity to receive the control and vice versa (e.g., Morgan and Winship, 2007, Chapter 4). 
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simply by chance sampling from a single population, as in a randomized controlled trial, without direct implication of a confounder 
(see Deaton and Cartwright, 2018, for an alternative interpretation). Furthermore, changes in standard errors such as resulting from 
inclusion of covariates can be interpreted in terms of changes in the sample size through the concept of efficiency. For example, Raftery 
(1995, page 124) notes an increase of a standard error by 47% (from 0.066 to 0.098) is equivalent to “throwing away more than half 
the data – (0.066/.098)2 = 0.45.” 

Sensitivity analysis should not only account for the dual aspects of an omitted confounder, but also for role of sampling variability, 
through the standard error, in inferences. Stated differently, sensitivity measures should account not only for how alternative con-
ditions can affect an estimate but also its precision through the standard error. In this paper we will attend to sensitivity with respect to 
estimates and standard errors, including new results deriving the conditions that can change an estimate to a specific threshold while 
holding the standard error constant. 

3. Sensitivity analyses foregrounding omitted variables: Impact Threshold for a confounding variable 

The history of sensitivity analysis based on the linear model includes Mauro’s (1990) tables and several contemporary techniques 
including bias masking (Middleton et al., 2016), simulation approaches (e.g., Carnegie et al., 2016), and the robustness value based on 
expressions of R2 (Cinelli and Hazlett, 2020). Nearly all draw on expressions of associations between the omitted variable and the 
predictor of interest and between the omitted variable and the outcome, with the primary challenge being to generate a single 
expression that is a function of both associations. These are the two associations that generate changes in the estimated effect for the 
predictor of interest that might be used to characterize the importance of a covariate (An and Glynn, 2021; Hong and Raudenbush, 
2005; Oster, 2019). 

One expression of the dual associations of the confounder is the product of the two associations: (association of omitted variable 
with the predictor of interest) x (association of the omitted variable with the outcome). Examples of this type of product can be traced 
back to Cochran (1938) if not earlier (e.g., to Fisher 1936) as well as to expressions for omitted variable bias in econometrics 
(Wooldridge, 2010). Through the product each component of confounding is important in proportion to the size of the other; re-
lationships with the outcome are important for variables strongly related to the predictor of interest, and vice versa. 

The functional form of the product is implied by other sensitivity analyses. The curvature in Imbens, (2003) line plot implies that 
small increases in the partial R2 between omitted variables and assignment reduce an estimate by the targeted amount for large values 
of the partial R2 with the outcome, and vice versa (others such as Carnegie et al., 2016; Cinelli and Hazlett, 2020; Dorie et al., 2016, 
have extended this to contour plots). See similar implications for binary outcomes (Rosenbaum, 2002; Harding, 2003) and in a pro-
pensity score framework (Hirano and Imbens, 2001; Hong, Yang and Qin, 2021b) and mediation framework (Imai, Keele and 
Yamamoto, 2010a). 

It is intuitive then to express sensitivity analysis in terms of the product: (association of omitted variable with the predictor of 
interest) x (association of the omitted variable with the outcome). Specifically, Frank (2000) quantifies the sensitivity of an inference in 
terms of the product of two correlations: rx⸱cvr y⸱cv, where rx⸱cv is the sample correlation between the predictor of interest (X) and the 
confounding variable (CV) and r y⸱cv is the sample correlation between the outcome (Y) and the confounding variable. Consider Hong 
and Raudenbush’s (2005) study of the effects of kindergarten retention on achievement. In Fig. 1, the relationship of interest is be-
tween kindergarten retention (X) and reading achievement (Y), which could be impacted by an omitted confounding variable (e.g., 
motivation). Frank (2000) defines that impact of the confounding variable as impact = rretention⸱cvrachievement⸱cv; the two components of 
confounding are resolved into a single term by taking the product. 

Frank (2000) turns the expression impact = rx⸱cvr y⸱cv into sensitivity analysis by showing how large the impact of an omitted 
variable must be to invalidate an inference. Drawing on Fig. 1, consider the model: 

Achievement = β0+β1Retention, (2) 

and assume β̂1 is statistically significant, rejecting the null hypothesis that β1 = 0. But there may be a skeptic who challenges the 

Fig. 1. The impact of a confounding variable.  
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inference. The skeptic might be a reviewer acting in the name of good science, or the skeptic might be someone who resists the policy 
implications of rejecting the null hypothesis to protect existing policy. Correspondingly, the skeptic may challenge the inference based 
on the existence of an omitted variable, that, if included in the model would alter the inference for β1. Consider the model: 

Achievement = β0+β1Retention + β2Motivation, (3) 

for which Motivation is unmeasured. A skeptic might challenge the inference from (1) for which β̂1 is statistically significant by 
claiming β̂1 would not be statistically significant in (2) upon including the omitted confounding variable, Motivation. 

Either in response to, or in anticipation of, such debates, researchers routinely employ controls for observed confounds through 
estimation techniques (e.g., regression analysis, propensity scores, regression discontinuity, instrumental variables). But what if β̂1 is 
still statistically significant even after controlling for observed confounds? Concerns about omitted variables might persist because it 
may be difficult to exhaustively account for all confounders with observed variables. The question then is, can the evidence be strong 
enough relative to a threshold for inference to inform action, even if there are potentially omitted variables? 

To respond to this question, Frank (2000) quantifies how strong the impact of an omitted variable must be to invalidate an 
inference. Specifically, Frank (2000) expresses β̂1 as a function of correlations associated with an omitted variable: 

β̂1|CV =
σ̂Y

σ̂X

rX · Y − rY ·CV rX ·CV

1 − r2
X ·CV

(4a)  

where rx⸱y is the sample correlation between X and Y. Note how the product rx⸱cvr y⸱cv appears in the numerator of (4a). Importantly, 
Frank (2000) also expresses how an omitted variable can affect the standard error representing sampling variability and used for 
inference: 

se
(

β̂1|CV
)
=

σ̂Y

σ̂X
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − R2
Y ·X

n − q − 1
×

1
1 − r2

X ·CV

√

=
σ̂Y

σ̂X
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 −

(
r2

X · Y + r2
Y ·CV − 2rX · Y rY ·CV rX ·CV

)

1 − r2
X ·CV

n − q − 1
×

1
1 − r2

X ·CV

√
√
√
√
√

(4b)  

where σ̂ is a sample variance, n is the sample size, and q the number of covariates. As can be observed, the product rx⸱cvr y⸱cv appears in 
both the expression for β̂1 as well as its standard error. 

A straightforward way (Frank et al., 2008) to calculate the impact necessary to invalidate and inference leverages the fact that there 
is a one-to-one correspondence between a t ratio as in (5) and a partial correlation. Specifically, 

rx · y|cv =
tx · y|cv

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
df + tx · y|cv

√ ,where tx · y|cv =
β̂1|CV,Z

se
(

β̂1|CV,Z
) . (5) 

The partial correlation, rx⸱y|cv can be expressed as (Cohen, West and Aitkin, 2014): 

rx⋅y cv =
rx⋅y − rx⋅cv × ry⋅cv
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

y⋅cv

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

x⋅cv

√ . (6) 

Similar to Frank (2000) for (4a) and (4b), Xu et al. (2019) show the maximum for (6) occurs for rx⸱cv = r y⸱cv. That is, the smallest 
possible product that could reduce rx⸱cv|z below a threshold occurs when rx⸱cv = r y⸱cv. Thus, making the assumption that rx⸱cv = r y⸱cv 
favors the challenger of the inference, consistent with a conservative stance for making inferences.4 

If rx⸱cv = r y⸱cv then impact = rx⋅cv × ry⋅cv = r2
x⋅cv = r2

y⋅cv. Substituting impact for rx⋅cv × ry⋅cv, r2
x⋅cv, and r2

y⋅cv in (6) yields: 

rxy cv =
rx⋅y − impact
1 − |impact|

. (7) 

Setting rx⸱y|cv to be less than or equal to any threshold value, r#, and solving for impact yields: 

Impact ≥
rx · y − r#

1 − |r#|
. (8) 

Thus, the partial correlation rx⸱y|cv will fall below the threshold value of r# if the impact of an omitted confounder is greater than 
rx · y − r#

1− |r# |
, which defines the Impact Threshold for a Confounding Variable (ITCV). 

The closed form expression in (8) supports intuition about sensitivity. Specifically, sensitivity about an inference is based on the 

4 Frank et al. (2021) observed that estimates change most when rx⸱cv = r y⸱cv and Cinelli and Hazlett also assume rx⸱cv = r y⸱cv in generating their 
robustness value but they do not provide a justification, and in their modeling framework the assumption does not necessarily maximize or minimize 
the estimated effect. 
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difference between the estimated effect and the threshold for inference (rx⸱cv -r#). This difference is then scaled relative to the threshold 
in the denominator (1-r#). An inference based on a given difference is less robust if the threshold is small, as would be the case for large 
sample sizes. 

A second advantage of working in terms of the partial correlation rx⸱y|cv is that the threshold for statistical significance can be 
directly calculated. Although r# can represent any specified threshold, a threshold for statistical significance is defined as 

r# =
tcritical

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
df + t2

critical

√ (9)  

where df is the degrees of freedom used to test β̂1. Because the inference for the regression coefficient in (3) is identical to that for the 
partial correlation in (6), the expressions in (8) and (9) directly account for changes in the estimated effect and its standard error. 
Correspondingly, when the impact of an omitted variable is greater than the ITCV defined by r#, β̂1 would not be statistically different 
from zero if the omitted variable were included in the model. 

3.1. Application of the ITCV to the inference of an effect of kindergarten retention on achievement 

We apply the ITCV to quantify the robustness of an inferred negative effect of kindergarten retention on achievement. Kindergarten 
retention is a large-scale phenomenon, with the US Department of Health and Human Services (2000) estimating that 8% of second 
graders (more than five hundred thousand) were a year behind their expected grade level as a result of not being promoted, known as 
retention, in kindergarten or first grade (see also Alexander et al., 2003, p. 1). As Hong and Raudenbush (2005, page 205) note in their 
abstract, “grade retention might harm high-risk students by limiting their learning opportunities.” Furthermore, a disproportionate 
percentage of those retained are from low socioeconomic backgrounds and/or are racial minorities (Alexander et al. chap. 5). As 
Alexander et al. wrote: “next to dropout, failing a grade is probably the most ubiquitous and vexing issue facing school people today” 
(p. 2). Furthermore, even if a child were retained in anticipation of positive psychological benefits, the state may not realize its in-
vestment in a retained child’s learning that should lead to a more productive, healthier, and engaged life. 

Given the prevalence and importance of retention, there have been considerable studies and syntheses of retention effects (e.g., 
Alexander et al., 2003; Holmes, 1989; Jimerson, 2001; Karweit, 1992; Shepard and Smith, 1989). Yet none of these studies has been 
conclusive, as there has been extensive debate regarding the effects of retention, especially regarding which covariates must be 
conditioned on (e.g., Alexander et al., 2003; Shepard, Smith and Marion, 1998). 

In the absence of random assignment which is not ethical for kindergarten retention (Alexander et al., 2003), researchers turn to 
observational studies that employ statistical controls to estimate effects of retention on achievement. Of the studies of retention effects 
(Burkam et al., 2007; Jimerson, 2001; Shepard and Smith, 1989), we focus on Hong and Raudenbush’s (2005) analysis of nationally 
representative data in the Early Childhood Longitudinal Study (ECLS) which included extensive measures of student background, 
emotional disposition, motivation, and pretests. 

Hong and Raudenbush (2005) used the measures described above in a propensity score model to define a “retained counterfactual” 
group representing what would have happened to the students who were retained if they instead had been promoted (e.g., Rubin 1974; 
Holland 1986). Hong and Raudenbush estimated that the “retained observed” group scored nine points lower on reading achievement 
than the “retained counterfactual” group at the end of first grade. The estimated effect was about two thirds of a standard deviation on 
the test, almost half a year’s expected growth (Hong and Raudenbush, p. 220), and was statistically significant (p ≤ .001, with standard 
error of 0.68, and t-ratio of − 13.67). Ultimately, Hong and Raudenbush concluded that retention reduces achievement: “children who 
were retained would have learned more had they been promoted” (page 200). 

Hong and Raudenbush (2005) relied on statistical controls with covariates to approximate equivalence between the retained and 
promoted groups. But they may not have conditioned for some confounding factor unmeasured in the data set, such as an aspect of a 
child’s cognitive ability, emotional disposition, or motivation. Instead of abandoning the process of inference altogether, we quantify 
the conditions necessary to change the inference to inform debate about the inference. 

Applying the analysis in this section, Hong and Raudenbush’s observed t-ratio of − 13.67 can be converted to a correlation using 
(5). Specifically, using sample size of 7639 (for 7168 promoted students, 471 retained students), 221 covariates used to estimate the 
effects, and assuming 1 extra covariate to be added to the model: 

r =
t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(n − q − 1) + t2

√ =
− 13.25

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(7639 − 221 − 2) + (13.25)2
√ = − .152.

Using equation (9) the degrees of freedom5 of 7416 yields a threshold correlation r#: 

r# =
tcritical

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(n − q − 1) + t2

critical

√ =
− 1.96

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(7639 − 221 − 2) + 1.962

√ = − .023.

From (7), 

5 Df of 7416 adjusts the sample of 7639 for the 221 covariates used in the propensity model. 
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ITCV =
rx · y − r#

1 − |r#|
=

− .152 − − .023
1 − |.023|

= − .132.

Correspondingly, from (7) 

rx · y cv =
− .152 − ( − .132)

1 − | − .132|
= − .023 = r#.

An omitted confounding variable would have to have an impact of rx•cv x ry•cv = − 0.132, with component correlations of .1321/2 =

0.36 (taking opposite signs) to result in a partial correlation of − 0.023 (associated with a p-value of .05). Correspondingly, if an 
omitted variable had an impact greater in magnitude than 0.132 the estimated effect of kindergarten retention on achievement would 
not be statistically significant (p > .05). This calculation accounts for how the omitted variable would change both the estimated effect 
and its standard error as in (4) through (9). All calculations can also be performed with the app at http://konfound-it.com or the R or 
Stata Konfound commands (see the app for details, or Xu et al., [2019] for the Konfound Stata command and Lin et al., 2022 for the 
Konfound command in R). 

For an observational study it is certainly quite likely that at least one confounding variable was omitted from the model. But the 
ITCV quantifies what the properties of that omitted variable must be to change the inference. Specifically, an omitted variable would 
have to be correlated with achievement at .36 and with retention at − 0.36 (signs are interchangeable) to invalidate the inference 
(accounting for sampling variability) of an effect of kindergarten retention on achievement. In this way, the ITCV informs comparisons 
of the weight of evidence against concerns about an incorrectly specified model, ultimately informing discourse about inference that 
can be the basis of public action. 

3.2. Extensions of the Impact Threshold for a confounding variable (ITCV) 

3.2.1. Benchmarks for the ITCV based on correlations associated with observed variables 
While the ITCV quantifies the exact hypothetical conditions necessary to change an inference, it can be useful to evaluate the ITCV 

by comparing with the impacts of observed covariates (e.g., Frank, 2000; Rosenbaum, 1986). To begin, for models such as (3) that 
already include observed covariate, z, the ITCV should be adjusted (Frank, 2000): 

ITCV|z =
rx⋅y|z − r#

1 − |r#|
= ry⋅cv|zrx⋅cv|z =

ITCV
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1 − r2
y⋅z

)(
1 − r2

x⋅z

)
√ (10) 

Then the ITCV|z can be expressed relative to the impact for an observed benchmark covariate z6: 

ITCV(benchmark)=
ITCV|z
ry⋅zrx⋅z

=
ry⋅cvrx⋅cv

ry⋅zrx⋅z
(11) 

The ITCV(benchmark) is the ratio of the unobserved impact necessary to change the inference relative to the observed impact of the 
covariate z. ITCV(benchmark) > 1 indicates that to invalidate the inference for β1, the impact of an unobserved covariate would have 
to be greater than the impact of the observed covariate (Altonji et al., 2005; Oster, 2019). In the kindergarten retention example, the 
impact of “student approaches to learning (SAL)” (the strongest covariate identified by Hong and Raudenbush 2006) is rSAL, retentionrSAL, 

achievement=(− 0.1849) (0.4442) = − 0.08. Correspondingly, the impact of an omitted variable would have to be 65% stronger than the 
impact of the strongest covariate to change the inference − 0.132/(− 0.08) = 1.65. 

Consider the model to now include a vector of observed covariates, Z: 

achievement= β0 + β1retention + В’Z (12) 

Frank (2000) shows that the expression in (11) can be generalized for the model in (12): 

ITCV(benchmark)=
ry⋅cvrx⋅cv

Ry⋅ZRx⋅Z
, (13)  

where the terms R2
y⋅Z and R2

x⋅Z can be obtained directly from the overall R2 from (13) and β̂1, se(β̂1), σ̂X and σ̂Y . The derivation assumes 
all the individual impacts for the variables in Z take the same sign (e.g., they all reduce the estimated effect). Thus, one can benchmark 
using one, some, or all covariates in Z. One can also benchmark conditional on other variables in the model such as pretests which have 
been shown to dramatically reduce the bias (by 60%–90%) in observational studies when compared with randomized controlled trials 
(e.g., Shadish et al., 2008; Steiner et al., 2010, 2011; see review in Wong et al. 2017). 

3.2.2. Assigning β̂1 to a threshold while preserving the standard error 
While the ITCV accounts for changes in an estimate and standard error if a confounding variable were added to a model, it can be 

6 Altonji et al. (2005) and Oster (2019) quantify sensitivity to a confounder in terms of the ratio of selection on observables to selection on 
unobservables rx⸱cv/ry⸱z, with their specification of the maximum R2 from (2) implying a value of ry⸱cv (Frank et al., 2022). 
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critiqued as applying only to statistical significance and not generally to evaluation of estimates against thresholds other than sta-
tistical significance from zero (e.g., Cinelli and Haslett, 2020). Here we note that sensitivity analyses that focus only on the estimated 
effect due to an omitted variable (e.g., Carnegie et al., 2016; Dorie et al., 2016; Imbens, 2003) likely make an implicit assumption that 
the standard error will not change with inclusion of an omitted variable. 

In online technical appendix A, we show how to choose correlations associated with Z to modify an estimated effect while holding 
the standard error constant. For the example of kindergarten retention on achievement, ̃β1|Z = -9.01(in absolute value) with a standard 

error of 0.68. We then set β̂1|cv = β# = -2, which represents about .1 of the growth in a given year and an effect size of about 0.15, near 
the norm for educational research (Kraft, 2020). The result in online technical appendix A shows that including a confounding variable 
(cv) in the model for which rx•cv|Z = 0.28 and ry•cv|Z = − 0.43 (with interchangeable signs), will yield β̂1|cv,Z at the threshold of − 2 with 
standard error of 0.68. This shows how we can consider the impact of the omitted variable on the estimated effect while preserving the 
precision of the original estimate. While rx•cv|Z of 0.28 and ry•cv|Z of − 0.43 represent sensitivity in two quantities note that the product 
yields an impact of rx•cv|Z ry•cv|Z =(0.28) (-0.43) = -0.120 which is 50% larger than the benchmark impact of .08 for SAL. 

4. Sensitivity analysis foregrounding potential outcomes: robustness of inference to replacement (RIR) 

An alternative to expressing confounding in terms of the dual components rx•cv ry•cv is to express differences between treatment and 
control groups on potential outcomes, some of which might be due to a confounder related both to treatment assignment and to the 
outcome. The potential outcomes framework is best understood through the counterfactual sequence: I had a headache; I took an 
aspirin; the headache went away. Is it because I took the aspirin? One will never know because we do not know what I would have 
experienced if I had not taken the aspirin. One of the potential outcomes I could have experienced by either taking or not taking an 
aspirin will be counter to fact, termed the counterfactual within Rubin’s Causal Model – RCM (for a history and review of RCM see 
Holland, 1986; or Morgan and Winship, 2007, chapter 2). In the example in this paper, it is impossible to observe a single student who 
is simultaneously retained in kindergarten and promoted into the first grade. 

Formally expressing the counterfactual shows how potential outcomes can be applied to represent bias from non-random 
assignment to treatments and thus can be utilized for sensitivity analysis. Define the potential outcome yt

i as the value on the 
dependent variable (e.g., reading achievement) that would be observed if unit i were exposed to the treatment (e.g., being retained in 
kindergarten); and define Yc

i as the value on the dependent variable that would be observed if unit i were in the control condition and 
therefore not exposed to the treatment (e.g., being promoted to the first grade). i If SUTVA (Rubin, 1986, 1990) holds – that there are 
no spillover effects of treatments from one unit to another – then the causal mechanisms are independent across units, and the effect of 
the treatment on a single unit can be defined as 

δi =Yt
i − Yc

i . (14) 

The problems of bias due to non-random assignment to treatment are addressed by defining causality for a single unit– there is no 
concern about confounding because the unit assigned to the treatment is identical to the unit assigned to the control. Similarly, there is 
no concern about sampling error because the model refers only to the single unit i. Of course, the potential outcomes framework does 
not eliminate the problems of bias due to non-random assignment to treatments or sampling error. Instead, it recasts these sources of 
bias in terms of missing data (Holland, 1986), because for each unit, one potential outcome is missing. 

The potential outcomes framework has been leveraged by multiple approaches to sensitivity analysis from closed form calculations 
based on matches (e.g., Rosenbaum and Rubin, 1983a,b) to graphical representations (e.g., Cinelli and Hazlett, 2020; Imbens, 2003), 
to computation of the properties of covariates (e.g., Kallus, Mao and Zhou, 2019; Jesson et al., 2021) to simulation-based techniques 
that generate full distributions of potential outcomes (e.g., Blackwell, 2014; Brumback et al., 2004; Dorie et al., 2016; Franks et al., 
2019). The key is to recognize that there is evidence of confounding if those assigned to the treatment would have done better in the 
control condition than those assigned to the control. For example, Blackwell (2014) defines confounding in terms of the expected 
differences between potential outcomes in the absence of a treatment effect. To explore sensitivity, Blackwell (2014) then replaces 
observed outcomes with outcomes adjusted for a given level of confounding and re-estimates the treatment effect. In a sense, the 
replaced cases achieve the conditional independence assumption associated with no unobserved confounding in the potential out-
comes framework (Rosenbaum and Rubin, 1983a,b). 

Here we leverage the RIR (Frank et al., 2013a,b; Frank et al., 2021a,b) to generate a compact expression of robustness based on the 
potential outcomes framework. The starting point for the RIR is when an analyst makes an inference (from a strong design) when the 
empirical evidence exceeds a threshold. As is commonly the case in academic research, the threshold can be defined by statistical 
significance – the threshold is an estimate just large enough to be interpreted as unlikely (e.g., p < .05) to occur by chance alone (for a 
given a null hypothesis). However, the threshold could also be generally defined as the point at which evidence from a study would 
make one indifferent to the inference. For example, the threshold could be the effect size where the benefits of a policy intervention 
outweigh its costs for either an individual or community (Kraft, 2020). 

Regardless of the specific threshold, one can compare an estimate with a threshold to represent how much bias there must be to 
invalidate, or undo, the inference. The more the estimate exceeds the threshold, the more robust the inference with respect to that 
threshold. 

Consider the idealized example in Fig. 2. Here, the estimated treatment effect is 6. If the standard error were 2, then the estimate 
would be statistically significant from zero if the estimate were greater than tcritical x standard error; the estimate must be greater than 
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1.96 × 2 = 3.92 (where 1.96 represents the critical value of a t-distribution for probability level of 0.05 for a two-tailed test and sample 
size of 60). Thus, we draw the threshold for inference at 3.92, or about a value of 4 shown on the graph in Fig. 2. 

Frank et al.’s, (2013b) interpretation of Fig. 2 is that because one-third of the estimated effect of 6 exceeds the threshold of 4, 
one-third of the estimate would have to be due to bias to change the inference. One could interpret this purely in terms of omitted 
variables (e.g., An and Glynn, 2021); an omitted variable would have to reduce the estimated effect by the one-third to invalidate the 
inference. But this would not account for the corresponding change in standard error upon including the omitted variable, returning to 
the ITCV. 

Frank et al. (2013) also demonstrate that one can interpret the % bias to invalidate an inference in terms of replacing observed cases 
with counterfactual cases where a null hypothesis of zero treatment effect held. Specifically, one would need to replace 1/3 of the 
observed cases with cases for which the treatment had no effect to reduce the estimated effect of 6 below the threshold for inference of 
4. The larger the proportion to replace, the more robust the inference. 

Formally, to calculate the changes in the data necessary to modify an estimated effect to a specific value, we follow Frank et al. 

(2021) to define the estimated effect from observed and unobserved data as (δ̂) as a function of the observed estimated effect (δ̂o) and 
the hypothesized effect in the unobserved (e.g., counterfactual) replacement data (δu). See Cronbach (1982) or Frank and Min (2007) 
for details. Assuming the proportion of units receiving the treatment is the same in the observed and unobserved data, an expression for 

δ̂ is: 

δ̂ =(1 − π)δ̂O + πδU . (15)  

where π is the proportion of observed cases replaced by unobserved cases. For example, cases can be replaced by their counterfactual 

counterparts (e.g., treatment cases replaced by counterfactual controls) in which there is no treatment effect. Therefore, ̂δ is a mixture, 
according to π, of δ̂o and δu. 

To determine the conditions necessary to change an inference, first assume a null hypothesis of zero effect holds exactly in the 
unobserved data: δu = 0 (Cinelli and Hazlett, 2020; Frank et al., 2013a,b; VanderWeele and Ding, 2017). For example, δu = 0 holds 
exactly if the unobserved data are generated from a null hypothesis of zero effect and there is no sampling variability because there is 
no covariate imbalance (the approach can also be extended to include countervailing effects in the replacement data – Frank et al., 

2013b). Or, δu = 0 holds if there are no variables confounded with treatment and outcome. Then set δ̂ = δ# where δ# defines the 
threshold for making an inference (such as an estimate associated with an effect size of specific clinical significance – Angst et al., 
2017) or with a specific p-value (e.g., 0.05) and finally solving for π yields: 

π = 1 −
δ#

δ̂O
= Robustness of Inference to Replacement (RIR). (16) 

The closed form expression in (16) allows one to calculate what proportion of the cases (π) in the observed sample would have to be 

replaced with counterfactual zero effect cases to reduce the combined estimate (δ̂) below the threshold (δ#) for making an inference 
(Frank et al., 2013a,b). For instance, in the simple example in Fig. 2 where ̂δo = 6 and δ# = 4, π = 1–4/6 = 1/3, implying that to change 
the inference, 1/3 of the observed cases would have to be replaced with counterfactual cases in which there was no effect of the 
treatment. 

4.1. Application of the RIR to the inference of an effect of kindergarten retention on achievement7 

Using the RIR, our question is not whether Hong and Raudenbush’s estimated effect of retention was biased because of variables 
omitted from their analysis. It almost certainly was. Our question instead is “How much bias must there have been to invalidate Hong 
and Raudenbush’s inference?” Using statistical significance as a threshold for Hong and Raudenbush’s sample of 7639 (471 retained 
students and 7168 promoted students, page 215 of Hong and Raudenbush), and standard error of 0.68, δ# = se (δ̂) x tcritical, df = 7600 =

0.68 x (− 1.96) = − 1.33; an estimated effect weaker than − 1.33 would not be statistically significant assuming the standard error 
remains at 0.68. Given the estimated effect of − 9, to invalidate the inference bias must have accounted for 85.2% of the estimated 
effect 1-(-1.33/-9) = 0.852. Verifying from (15): 

δ̂ = (1 − π)δ̂O + πδU
⇒ (1 − .852)(− 9) + (.852)(0) = 1.33 = δ#

Drawing on the potential outcomes framework, to invalidate Hong and Raudenbush’s inference of a negative effect of kindergarten 
retention on achievement one would have to replace 85% of the cases with counterfactual cases for which there was no effect of 
retention, conditional on the covariates in the model including background characteristics, school membership, and pretests. 

Fig. 3 (adapted from Fig. 4 in Frank et al., 2013a,b) shows the replacement process. The dashed lines indicate the observed dis-
tribution of test scores for those who were retained (on the left) and promoted (on the right). The black bars represent cases that were 

7 This section is adapted from Frank et al. (2013). 
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not replaced. The gray bars represent counterfactual data used to replace 85% of the observed cases. The resulting distributions 
including the black and gray bars would have difference of − 1.25 with p = .064. 

Our analysis appeals to the intuition of those who consider what would have happened to the promoted children if they had been 
retained, as these are exactly the potential outcomes on which our analysis is based. Consider test scores of a set of children who were 
retained that are considerably lower (9 points) than others who were candidates for retention but who were in fact promoted. No doubt 
some of the difference is due to advantages the comparable others had before being promoted. But now to believe that retention did not 
have an effect one must believe that 85% of those comparable others would have held their advantages, already conditioned on 
measured covariates, whether or not they had been retained. Although interpretations will vary, our framework allows us to interpret 
Hong and Raudenbush’s inference in terms of the ensemble of factors that might differentiate retained students from comparable 
promoted students. In this sense the RIR quantifies the robustness of the inference in terms of the experiences of promoted and retained 
students as might be observed by educators in their daily practice. 

4.2. Extensions of the robustness of inference to replacement (RIR) 

4.2.1. Benchmarks for the RIR 
As with the ITCV, it can be valuable to interpret the hypothetical conditions associated with the RIR relative to observed data. Once 

controlling for pre-tests, background characteristics (including mothers’ education, poverty, two parent home, and gender) reduced 
the estimated effect of kindergarten retention on achievement by about 1%.8 Therefore, once controlling for pretests, omitted factors 
would have to be approximately 85 times more powerful than background characteristics to invalidate the inference of an effect of 
kindergarten retention on achievement. We ask: What omitted variable could be 85 times more important than background charac-
teristics, including mothers’ education, in accounting for the relationship between kindergarten retention and achievement? The 
question does not change the initial inference but informs the discourse about that inference. 

4.2.2. Conditions necessary to preserve the standard error 
Many of the simulation approaches to sensitivity based on the potential outcomes framework account for sampling variability (e.g., 

Blackwell, 2014; Brumback et al., 2004; Dorie et al., 2016; Franks et al., 2020). While these approaches may simulate the sampling 
exercise, they introduce a stochastic element into sensitivity that may make discourse more challenging by requiring interpretation 
over a range of results. As an alternative, we can consider the conditions that ensure that the standard error does not change when cases 
are replaced. This ensures that changes in the data are due to replacement and not in terms of the precision which as noted earlier has 
implications for the sample size (Raftery, 1995). 

Online technical appendix B shows that cases can be replaced without changing the precision of the estimate as reflected in the 
standard error. This can be accomplished with a small adaptation of the RIR and with a careful choice of Sunobs

y , the standard deviation 
of Y in the replacement data. In the example of kindergarten retention on achievement, the RIR is 84% which reflects how the standard 
deviation of Y in the combined data will change when some data are replaced. Correspondingly, the standard deviation in the 
replacement cases, Sunobs

y , is 14.4. That is, if 84% of the cases are replaced with data for which Sunobs
y = 14.4, then δ̂ = -1.33 and se (δ̂) 

remains at 0.68 as originally reported, with a p-value of .05. 

Fig. 2. Estimated effect relative to a threshold for inference.  

8 Results available upon request. 
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4.2.3. Relationship of RIR to p-values and confidence intervals 
At its core, we emphasize that sensitivity analyses can inform conversation about the robustness of an inference, helping a broader 

community weigh in on the link between evidence and practice. RIR can be used to enhance and refine the standard ways researchers 
communicate the confidence of their findings in terms of P-values and confidence intervals. Consider the language of “highly” or 
“marginally” statistically significant often used in conjunction with p-values, or the language of an interval “close to zero.“. Then 
examine the comparison of RIR and the p-value depicted in Fig. 4 (assuming a p-value of .05 is used as a basis of an inference, sample 
sizes chosen to represent .8 power for small, medium and large effects in the social sciences). The steep slope on the left indicates that 

Fig. 3. Example replacement of cases with counterfactual data to invalidate inference of an effect of kindergarten retention on achievement.  

Fig. 4. Robustness of Inference to Replacement (RIR) vs p-value.  
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the RIR conveys differences in uncertainty even when very small p-values are almost indistinguishable and difficult to interpret (in fact 
the % bias increases logarithmically with the decline in p-value). Specifically, while it is difficult to conceptualize the difference 
between p of .01 and p of .001 on the horizontal axis, it is more direct to understand that the inference would change if 25% versus 85% 
(as in the example of kindergarten retention) of the cases needed to be replaced on the vertical axis. 

Confidence intervals are often suggested as alternatives to p-values for expressing the uncertainty of findings that account for 
sampling variability (e.g., Wilkinson et al., 1999). Typically, researchers are guided to express robustness by assessing how close the 
boundary of a confidence interval is to zero, ultimately leading to such statements as “rejected overwhelmingly” (Romer, 2020). But 
the basis for such decisions is usually a comparison of the distance from the lower bound of the confidence interval to zero. This is 
determined by two quantities: the estimated effect, δ̂, which determines the location of the center of the interval, and se(δ̂) tcritical 

which determines the width of the interval, and therefore the lower bound conditional on δ̂. These are exactly the quantities used to 
define the RIR, which intuitively represents the % bias necessary to invalidate the inference. 

4.2.4. Contrast and comparison of the ITCV and RIR 
While the ITCV and the RIR draw on different frameworks, they have elements that contrast and allow direct comparison. First, the 

ITCV is expressed in terms of variables, such that it represents general relationships among constructs that may appeal to those who 
think in terms of underlying theory. In contrast, the RIR is expressed in terms of cases, which may appeal to those such as clinicians 
familiar with the discrete observations or individuals. In a sense, then, the RIR quantifies robustness by considering replacing whole 
cases, whereas the ITCV quantifies robustness by adjusting each case as a function of the value of an omitted variable. 

To fully compare the ITCV and RIR, we note how the general linear model approximates the counterfactual condition. In model (2), 
the variable retention takes a value of 1 if the student was retained, 0 if promoted. Therefore, for a given student i who was retained 
(retention = 1) the counterfactual is defined by rentention = 0. We can then predict the outcome for student i under the counterfactual 
by substituting retention = 0 instead of retention = 1 into the model: 

Observed for student i who was retained (retention = 1) 

achievementi|retention= 1
= β0 + β1(1)i + β2motivationi + ei = β0 + β1 + β2motivationi + ei .

(17a) 

Counterfactual for student i who was retained (retention = 0) 

achievementi| retention= 0
= β0 + β1 + β2motivationi + ei = β0 + β2motivationi + ei .

(17b) 

Note that β0, β2, motivation and the error (ei) in (17b), are exactly as in the observed condition in (17a). This is based on an 
interpretation of the counterfactual as an alternate universe identical to the observed except for the single change in treatment 
assignment. Then the difference between (17a) and (17b) is: 

[β0 + β1 + β2motivationi + ei] − [β0 + β2motivationi + ei] = β1.

Thus, for any case specific case β1 is defined by the difference between the observed outcome conditional on motivation and the 
counterfactual outcome assuming the same error term, covariates, and estimates of β0 and β2. One can decompose differences in 
expected outcomes between the treatment and control groups into a component based on differences in mean values on the covariates 
and a component based on differences in estimated coefficients when the covariates are used to predict the outcome separately for the 
treatment and control groups (Blinder, 1973; Oaxaca, 1973). 

While the counterfactual can be approximated by a linear model, it is important to note that because the RIR is rooted in cases it is 
essentially non-parametric and can be applied to evaluation of any relationship between a predictor of interest and an outcome. Stated 
another way, whereas the ITCV is most appropriate for conventional linear modeling and NHST, the RIR is appropriate for virtually any 
kind of estimation technique. As a result, the RIR can readily be adapted to iterative estimation procedures that are not closed form 
(including multilevel models or generalized estimation equations). For example, Frank et al. (2021) apply the RIR to inferences for 
dichotomous outcomes, extending the Fragility Index (e.g., Walsh et al., 2014) by accounting for the prevalence of positive and 
negative outcomes (the technique is extended to logistic regression at http://konfound-it.com, see Lin et al., 2022). This complements 
Vanderweele and Ding (2017) by using a threshold that is a function of sampling variability. For multilevel models that can be 
expressed as weighted least squares, one can conceptualize RIR as replacing one observed level two unit (e.g., a school) with a final 
weight of w with a hypothetical unit that also is associated with a weight of w. We also note that the RIR can be directly applied to 
concerns about sampling variability as in external validity (Frank and Min, 2007; Frank et al., 2013a,b) such as for a randomized 
controlled trial. 

As noted in the presentation of the ITCV and RIR, each can be considered an evaluation of an estimated effect versus a threshold for 
inference: ry.x − r# (when expressed as a correlation metric). The ITCV evaluated this comparison relative to 1 − |r#| while the RIR 
evaluates relative to ry.x. Thus, the ITCV includes an extra penality for large samples; large samples produce small values of r# and 
therefore a larger denominator and smaller value of the ITCV. On the other hand, the RIR includes a penalty for large estimated effects 
– the larger the estimated effect the smaller the proportion bias must be to invalidate the inference. Thus the preference for the ITCV 
versus the RIR depends in part on whether one conceptualizes robustness as scaled relative to the threshold for making the inference or 
the size of the estimated effect. This has important implications such as applied to BIG data which have large n or replicability ex-
periments which tend to have small n. 
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5. Discussion 

Sensitivity analyses are key for informing discourse about inferences. Sensitivity analyses are especially useful when they express 
the robustness of an inference in a single quantity representing the dual component of confounding as well as when they account for 
sampling variability. In this paper we have reviewed two frameworks for accomplishing these goals. First, we presented the Impact 
Threshold for a Confounding Variable (ITCV) which foregrounds omitted variables in the linear model. This captures the dual elements 
of confounding as the product of the two correlations associated with potentially omitted variables, and accounts for sampling 
variability by defining the threshold for inference in terms of the partial correlation (e.g., as associated with a p-value of .05). The 
second was the Robustness of Inference to Replacement (RIR) which foregrounds the potential outcomes of individuals. This captures 
the two components of confounding in terms of differences in potential outcome means between the counterfactual treatment and 
control groups that can be caused by an omitted variable associated with both treatment assignment and outcome. In our example, 
using the ITCV, an omitted variable would have to be correlated at 0.36 with kindergarten retention and achievement (taking opposite 
signs) to invalidate Hong and Raudenbush’s (2005) inference of a negative effect of retention on achievement. Using the RIR, to 
invalidate the inference 85% of the cases would have to be replaced with counterfactual cases in which retention had no effect. We note 
that the ITCV and RIR are representative of sensitivity techniques based on omitted variables or the potential outcomes framework as 
reviewed in the introduction. To complete the frameworks, we extended the ITCV and RIR to identify the conditions that changed 
estimates to specific values without increasing or decreasing sampling variability as represented by the standard error. 

5.1. Best practices for sensitivity analysis 

Application of sensitivity analysis is relatively new, and therefore we provide the following guides to practice. First, sensitivity 
analyses assume that models have already been developed appropriately and are inclusive of alternative explanations represented by 
observed variables –Stated plainly, the first best practice is that sensitivity analysis should only be conducted after a 
researcher has fully specified a model including all relevant and available measures. This especially applies to leveraging 
longitudinal data, as including pretests (lagged dependent variables) in a model can reduce bias by 60–90% versus comparable 
randomized experiments (e.g., Shadish et al., 2008; see the review in Wong et al., 2017). See also recent work by Belloni et al. (2016), 
Young and Holsteen (2017) and Young (2018) regarding model selection. It is misleading to apply sensitivity analyses to models 
that have not already been rigorously vetted given the available data. But once the best models have been estimated and 
adjudicated, there may still be concerns about potential bias through omitted variables or sampling variability. Sensitivity analyses 
such as the ITCV and RIR can then inform discussions about inferences by quantifying the terms of uncertainty about inferences rooted 
in the underlying frameworks applied to data analysis (omitted variables and potential outcomes). 

Second, the ITCV and RIR may best support rigorous science when used with conventional, transparent methods that can be 
interpreted by a range of consumers and producers of research. Use of sensitivity analysis allows one to plainly state the adjustments 
employed in a model used while acknowledging that there may still be other factors unaccounted for. That is, sensitivity analyses focus 
scientific discourse on the factors that were and were not controlled for rather than on estimation techniques that may be more difficult 
to track. Ultimately, the transparency of the models and interpretation among researchers can transfer to discourse among a broad 
range of stakeholders in a policy. 

It may be tempting to offer a threshold for a sensitivity index itself such as an ITCV greater than __ or an RIR greater than __ indicates 
a robust inference. But adding a threshold value for a sensitivity index invites one to then compare how much the index exceeds its own 
threshold (just barely or by a lot?), which can lead to an infinite spiral of derivative comparisons to thresholds. We believe it is best to 
make inferences by comparing estimated effects to thresholds that are meaningful in a given literature, and then by quantifying the 
discourse about the robustness of the inference. These comparisons can then be further evaluated against benchmarks defined by 
observed covariates. The sensitivity analyses should inform, not preempt by virtue of exceeding a threshold, the discourse among 
researchers, consumers, and stakeholders invested in an inference. 

5.2. The context for sensitivity analyses 

We have presented sensitivity analyses in the context of discourse about causal related to policy. But it is important to recognize 
that policy can be informed by purely descriptive analyses. Policies about voter fraud, sexually transmitted infections, or births and 
population growth can be informed by purely descriptive analyses.9 The observational studies we have focused on here occupy a 
middle ground between the purely descriptive and the more complex models that would account for feedback loops (Maroulis, 2016) 
and implementation processes (e.g., Frank, Xu and Penuel, 2018). We contend that we can learn from such studies, if interpreted in 
context and understanding of limitations. 

Key to interpretation of any study is the ability for different stakeholders across a range of backgrounds and interests to engage in 
the discourse about the interpretation, and the sensitivity analyses we present here provide an accessible language for broad discourse. 
This can apply even to randomized control trials (RCTs) when there are concerns about the external validity of volunteer or convenient 
samples or imbalance for small samples (e.g., Frank and Min, 2007; Frank et al., 2013a,b; Tipton, 2014). Sensitivity analyses allow 

9 We thank an anonymous reviewer for this observation. 
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interpreters of research to make inferences based on the strength of the evidence while acknowledging that there may be alternative 
factors at work or heterogeneity of effects in different populations. This supports pragmatic utilization of a mixture of study designs 
instead of reliance exclusively on RCTS that may be difficult to replicate when sample sizes are small (Moody, Keister & Ramos-Flor, 
2022). 

5.3. Conclusion 

Sensitivity analyses are vital to the social sciences because the inferences made are about people, and corresponding action will 
directly affect people. Therefore, inferences will typically be debated by researchers and stakeholders who have different experiences, 
interests in related practices and policies. In the example used throughout this paper, inferences about kindergarten retention will be 
debated by family members’ seeking the best experiences for their children, teachers who directly educate children, and by schools, 
districts and the state responsible for educating sets of children. Sensitivity analyses provide a precise language for discourse about 
such an inference, ultimately supporting better, more informed, decision-making. This may be especially crucial when, as a society, we 
must weigh the expected benefits and harms of action against the consequences of inaction. 

Online Technical Appendix A: Derivation of Correlations Associated with Omitted Variable to Assign β̂1|cv to a Threshold while 
Preserving the Standard Error 

One can make explicit the assumption that the standard error remains unchanged while producing the desired value of β̂1 if an 
omitted variable were added to a model. To do so, set the expression for ̂β1|CV,Z equal to a threshold value, β# and set the standard error 

for β̂1|CV,Z to be equal to the standard error for β̂1|Z: 

β̂1|CV,Z =
σ̂Y|Z

σ̂X|Z

rX · Y|Z − rY ·CV|ZrX ·CV|Z

1 − r2
X ·CV|Z

= β#, and (A1)  

se
(

β̂1|CV,Z
)
=

σ̂Y|Z

σ̂X|Z
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − R2
Y ·X|Z

n − q − 1
×

1
1 − r2

X|Z ·CV

√
√
√
√

=
σ̂Y|Z

σ̂X|Z
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(

r2
X · Y|Z + r2

Y ·CV|Z − 2rX · Y|ZrY ·CV|ZrX ·CV|Z

)

1 − r2
X|Z ·CV|Z

n − q − 1
×

1
1 − r2

X ·CV|Z

√
√
√
√
√
√
√

= se
(
β̃1|Z

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

X · Y|Z

n − q − 1

√

..

(A2) 

The first line in (A1) represents the assignment of β̂1|cv to a specific value, β#. The equality on the right hand side of (A2) then 

reflects the assumption that the standard error remains unchanged when a confound is added to the model: se(β̂1|CV,Z) = se(β̂1|Z). The 
expressions in (A1) and (A2) establish a system of two equations and two unknowns: rX⸱CV and rY⸱CV. Then using Mathematica (because 
the expression is very complex producing three solutions, but two that typically have imaginary roots) to obtain a preliminary solution 
for rX ·CV (after which one can directly solve for rY ·CV from either A1 or A2) yields three solutions of which we include the one that 
produces results with − 1 < rxcv < 1 for our example (other solutions available upon request). 

Solution: 

rxcv2 = −
2 − b2 + 2b • ryx − 2ryx2

3(− 1 + ryx2)
+

(
1 − i

̅̅̅
3

√ )(
−
(
2 − b2 + 2b • ryx − 2ryx2

)2
+ 6(− 1 + ryx2)

(
b2 − 2b • ryx + ryx2

))

T

−
1 + i

̅̅̅
3

√

6 × 21/3(− 1 + ryx2)
S1/3

}

rycv=
ryx − b • (1 − rxcv2)

rxcv  

where 

T=3×22/3( − 1+ryx2)
(
− 16+15b2 +6b4 +2b6 − 30b• ryx − 24b3 • ryx − 12b5 • ryx+39ryx2 +12b2•ryx2 +18b4 • ryx2 

+24b• ryx3 +8b3 • ryx3 − 30ryx4 − 27b2•ryx4 +6b• ryx5 +7ryx6

+√
((

− 16+15b2 +6b4 +2b6 − 30b• ryx − 24b3 • ryx − 12b5 • ryx+39ryx2 +12b2 • ryx2 +18b4 • ryx2 +24b• ryx3 +8b3•ryx3 

− 30ryx4 − 27b2 • ryx4 +6b• ryx5 +7ryx6)2
+4

(
−
(
2 − b2 +2b• ryx − 2ryx2)2

+6
(
− 1+ ryx2)( b2 − 2b• ryx+ ryx2)

)3))1/3  
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S= − 16+ 15b2 + 6b4 + 2b6 − 30b • ryx − 24b3 • ryx − 12b5 • ryx+ 39ryx2 + 12b2 • ryx2 + 18b4 • ryx2 + 24b • ryx3 + 8b3

• ryx3 − 30ryx4 − 27b2 • ryx4 + 6b • ryx5 + 7ryx6

+ √
((

− 16 + 15b2 + 6b4 + 2b6 − 30b • ryx − 24b3 • ryx − 12b5 • ryx + 39ryx2 + 12b2 • ryx2 + 18b4 • ryx2 + 24b•ryx3 

+8b3 • ryx3 − 30ryx4 − 27b2•ryx4 + 6b•ryx5 + 7ryx6)2
+ 4

(
−
(
2 − b2 + 2b • ryx − 2ryx2)2

+ 6
(
− 1 + ryx2)( b2 − 2b • ryx + ryx2)

)3)

where b represents the threshold. For models that already contain covariates z, the threshold must be modified: 

β̃= β# σ̂x|z

σ̂y|z
.

These analyses can be run in R using the followign commands (please check the Github page as we are actively updating the 
konfound package): 

Install.packages(“devtools") 
Devtools:install_github(“jrosen48/konfound") 
Library(konfound). 
Pkonfound(est_eff = 0.125, std_err = 0.050, n_obs = 6300, sdx = 0.217, sdy = 0.991, R2 = 0.251, eff_thr = 0, FR2max = 0.61, 

index = “PSE”, to_return = “raw_output") 
Online Technical Appendix B: Deriving sdunob

y to preserve se(δ̂) as in the Robustness of Inference to Replacement 

To derive the sdunob
y that preserves se(δ̂) first note: 

se(δ̂) =
sdy|x
̅̅̅̅̅̅̅̅
SSX

√ =
sdy|x

sdx
̅̅̅̅̅
df

√

⇒ sdy|x = se(δ̂)sdx
̅̅̅̅̅
df

√
. (B1) 

Therefore, sdy|x can be calculated from reported quantities. Next, 

sdy|x = sdcombined
y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (r#)2
√

⇒ sdcombined
y =

sdy|x
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (r#)2
√ ,

(B2)  

where

r# =
tcritical

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

t2
critical + df

√ . (B3) 

Therefore, sdcombined
y can also be calculated from sdy|x and known quantities tcritical and df. 

Before proceeding, note that because dcombined
y ∕= sdy , we must define π as: 

π = 1 −
r#sdcombined

y
sdy

rxy
. (B4) 

Finally, assume (these assumptions can be relaxed using online appendix B in Frank and Min, 2007):  

1) the variance and mean of the predictor are the same in the replacement cases as in the observed cases: s2unobs
x = s2unobs

x ; xunobs =

xunobs. This assumption does not pertain to the relationship between X and Y used for inference. The assumption holds, for example, 
if 30 treatment and 20 control cases removed from the observed data are replaced with 30 treatment and 20 control cases with 
different values on Y.  

2) the variance in the sample of observed cases not replaced is s2obs
y (as would be expected under for random sampling); and  

3) yunobs = yobs (that is, that the source of data does not affect the overall mean of Y). 

Then the variance in the combined data (sd2combined
y ) including those original cases not replaced as well as the replacement data is: 

sd2combined
y = (1 − π)s2obs

y + πs2unob
y

⇒ sdunob
y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sd2combined
y − (1 − π)s2obs

y

π

√
. (B5) 

Therefore, sdunob
y can be calculated from (B5) given the values of sd2combined

y and the sample values of s2obs
y and π. 

A combined expression for sdunob
y is: 
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sdunob
y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

se(̂β)sdx
̅̅̅
df

√

̅̅̅̅̅̅̅̅̅̅̅̅
1− (r#)2

√

)2

− (1 − π)s2obs
y

π

√
√
√
√
√

. (B6) 

These results may be less stable when the number of cases to replace is less than 10. 
In the example of Hong and Raudenbush’s (2005) inference of an effect kindergarten retention on achievement: 

sdy|x = se(δ̂)sdx
̅̅̅̅̅
df

√
=(.68)(.24)

̅̅̅̅̅̅̅̅̅̅
7637

√
= 14.26,

r# =
tcritical

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
t2
critical + df

√ =
− 1.96

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 1.962 + 7637

√ = − .022  

and 

sdcombined
y =

sdy|x
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (r#)2
√ =

14.26
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (− .022)2
√ = 14.27.

Then 

π = 1 −
r#sdcombined

y
sdy

rxy
= 1 −

− .022 14.26
13.50

− .15
= .84,

where. 
rxy = t̅̅̅̅̅̅̅̅̅

t2+df
√ = − 13.25̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 13.252+7637
√ = − .15, based on 

T = sdy|x = δ̂
se(̂δ)

= − 9.01
.68 = − 13.25 where δ̂ and se(δ̂) are obtained from Hong and Raudenbush (2005) as reported in the main text. 

Then 

sdunob
y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sd2combined
y − (1 − π)s2obs

y

π

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
14.272 − (1 − .84)13.52

13.5

√

= 14.40.

Therefore, if 84% of the cases are replaced with cases for which sdunob
y = 14.40 the estimated effect will be − 1.33 with standard 

error of 0.68 associated with p = .05 (R code available upon request). 

Appendix A. Supplementary data 

Supplementary data related to this article can be found at https://doi.org/10.1016/j.ssresearch.2022.102815. 
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