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Abstract. Statistical methods that quantify the discourse about causal infer-
ences in terms of possible sources of biases are becoming increasingly impor-
tant to many social-science fields such as public policy, sociology, and education.
These methods are also known as “robustness or sensitivity analyses”. A series
of recent works (Frank [2000, Sociological Methods and Research 29: 147–194];
Pan and Frank [2003, Journal of Educational and Behavioral Statistics 28: 315–
337]; Frank and Min [2007, Sociological Methodology 37: 349–392]; and Frank
et al. [2013, Educational Evaluation and Policy Analysis 35: 437–460]) on robust-
ness analysis extends earlier methods. We implement these recent developments
in Stata. In particular, we provide commands to quantify the percent bias nec-
essary to invalidate an inference from a Rubin causal model framework and the
robustness of causal inferences in terms of correlations associated with unobserved
variables.

Keywords: st0565, konfound, mkonfound, pkonfound, causal inferences, bias, con-
founding, robustness or sensitivity analyses

1 Introduction

Statistical inferences are often challenged on their uncontrolled bias. There may be bias
due to uncontrolled confounding variables or nonrandom selection into a sample. Meth-
ods for sensitivity analysis have been developed to assess the robustness of inferences
to various sources of bias and inform debate about causal inference. However, most
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of the previous methods either accounted only for particular sources of bias (such as
an unobserved variable) or applied only to certain types of data (such as the categor-
ical treatment variable; see DiPrete and Gangl [2004]; Gill and Robins [2001]; Robins
[1987]; Robins, Rotnitzky, and Scharfstein [2000]; Rosenbaum [1986, 2002]; Scharfstein
and Irizarry [2003]; VanderWeele [2010]; and VanderWeele and Arah [2011]). In a series
of articles (Frank [2000]; Pan and Frank [2003]; Frank and Min [2007]; and Frank et al.
[2013]), researchers have extended previous work and developed two robustness-analysis
frameworks. The first uses Rubin’s causal model to interpret how much bias there must
be to invalidate an inference in terms of replacing observed cases with counterfactual
cases or cases from an unsampled population. The second quantifies the robustness
of causal inferences in terms of correlations associated with unobserved variables in a
regression framework.

In this article, we introduce the konfound command, which implements the two
robustness-analysis methods described above in Stata. Specifically, konfound can be
used to implement the robustness analysis for the user’s model; the mkonfound com-
mand can be used to implement the robustness analysis for multiple studies; and the
pkonfound command can be used to implement the robustness analysis for a single
published study. Next, we briefly discuss the foundations of these two methods and
describe how to use konfound in Stata. For a longer introduction of the methods and
more technical details, readers should refer to Frank (2000), Pan and Frank (2003),
Frank and Min (2007), and Frank et al. (2008, 2013).

2 Robustness of an inference

2.1 Impact threshold for an omitted confounding variable

In observational studies and quasiexperiments, a key concern pertaining to causal in-
ference is the omitted variable bias problem. That is, there are some unobserved con-
founding variables that may be correlated with both the outcome and the predictor of
interest, which will bias the estimates of the model and thus invalidate inferences. To
quantify the impact of a confounding variable necessary to alter a statistical inference,
Frank (2000) defined the impact of a confounding variable as rx·cvry·cv, where rx·cv is
the correlation between the unobserved confound and the predictor of interest and ry·cv
is the correlation between the unobserved confound and the outcome. For example,
if the relationship of interest is between one’s father’s occupation (X) and one’s own
educational attainment (Y ), an omitted confounding variable might be one’s father’s ed-
ucation (cv). And the index developed by Frank (2000) allows us to quantify the impact
of father’s education in terms of its correlation with the predictor father’s occupation
and its correlation with the outcome—educational attainment. Frank (2000) then shows
how strongly an omitted confounding variable (cv) would have to be correlated with
the predictor (father’s occupation, X) and the outcome (educational attainment, Y ) to
invalidate an inference of the effect of X on Y .
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Figure 1. The impact of a confounding variable on a regression coefficient

Formally, the calculations follow a partial correlation framework (for more details,
see Frank [2000] and Pan and Frank [2004]). For a bivariate regression,

Y = β0 + β1X + e

the correlation between X and Y − ry·x can be obtained following

t
(
β̂1

)
=

ry·x√
1−r2y·x

n−q−1

where t is the t ratio of β̂1 to its standard error from a fit model, n is the sample size,
q is the number of parameters estimated (other than the intercept) in the model, and
the partial correlation between X and Y after controlling for the confounding variable
cv− ry·x|cv can be represented as

ry·x|cv =
ry·x − ry·cvrx·cv√

1− r2y·cv

√
1− r2x·cv

To invalidate an inference, we consider the conditions necessary to reduce rx·y|cv
below a threshold, r#, for making an inference. Here

r# =
tcritical√

(n− q − 1) + t2critical
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where tcritical is decided by the significance level (for example, for significance level of
0.05 and a two-sided test with degrees of freedom > 200, tcritical = 1.96).

To calculate the correlations associated with an omitted confounding variable nec-
essary to invalidate an inference, assume the component correlations are equal, rx·cv =
ry·cv, which generates the largest change from rx·y to rx·y|cv for a given product =
rx·cv × ry·cv = impact (Frank 2000). Then, from Frank (2000), impact = rx·cv × ry·cv =
rx·cv×rx·cv = ry·cv×ry·cv. Next, set the partial correlation ry·x|cv equal to the threshold

r#,

ry·x|cv =
ry·x − ry·cvrx·cv√
1− r2y·cv

√
1− r2x·cv

=
ry·x − impact

1− impact
= r#

and then solve for impact:

impact =
ry·x − r#

1− |r#|
Thus, to invalidate the inference, the impact of the confounding variable (rx·cv × ry·cv)
must be greater than

ry·x − r#

1− |r#|

Furthermore, the approach also applies to estimated coefficients that are less than
their thresholds, r#. Here is how one alters an inference (assuming r and r# take the
same sign):

if : r > r# ⇒ impact =
ry·x − r#

1− r#

if : r < r# ⇒ impact =
ry·x − r#

1 + r#
(1)

Thus, (1) quantifies the smallest impact of the confounding variable necessary to inval-
idate a statistical inference based on the threshold, r#.1

The above calculations can also be extended to models that control for observed
covariates as in multiple regression, where the interpretation of the impact and the
correlation can be conditioned on other covariates in the model. In the multiple regres-
sion case, the raw component correlation before conditioning on covariates can also be
derived; interested readers should see Frank (2000). This is available in the konfound

command.

2.2 Percent bias necessary to invalidate an inference

A second approach starts by assessing what proportion of an estimate must be due to
bias to invalidate an inference (Frank et al. 2013). The proportion is then interpreted

1. In a case of suppression, smaller products of unequal correlations may produce comparable changes
in inference.
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in terms of the proportion of observed cases that would have to be replaced with null
hypothesis cases to invalidate the inference. These replacement cases can come from
counterfactual data as in Rubin’s causal model (Rubin 1974) or from a population
from which observed cases were not sampled. This framework enables researchers to
identify a “switch point” (Behn and Vaupel 1982) where the bias is large enough to
undo one’s belief about an effect (for example, from inferring an effect to inferring no
effect). Using the switch point, this framework addresses the concerns pertaining to
external validity (such as the extent to which the sampling process has to be biased to
invalidate the inference) or concerns pertaining to internal validity (such as the extent
to which bias because of uncontrolled preexisting differences can invalidate the inference
of the treatment effect).

The approach begins when one compares an estimate with a threshold to represent
how much bias there must be to switch the inference. For example, consider figure 2, in
which the treatment effect from hypothetical study A (with an estimated effect of 6) and
B (with an estimated effect of 8) each exceeds the threshold for making an inference of 4.
But note that the estimated effect from study B exceeds the threshold by more than the
estimate from study A (assuming that the estimates were obtained with similar levels
of control for selection bias in the design of the study and similar levels of precision).
Therefore, we state that the inference from study B is more robust than that from
study A because a greater proportion of the estimate from study B must be due to bias
to invalidate the inference.

Figure 2. Percent bias necessary to invalidate an inference

To formally derive the percent bias necessary to invalidate an inference, define a pop-
ulation effect as δ, the estimated effect as δ̂, and the threshold for making an inference
as δ#. An inference about a positive effect is invalid if

δ̂ > δ# > δ
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That is, an inference is invalid if the estimate is greater than the threshold while the
population value is less than the threshold (a symmetric argument applies for negative
effects).

To express how much bias there must be in the estimate to invalidate the inference,
we can rewrite the above equation as

δ̂ − δ > δ̂ − δ# > 0

Let’s define bias as bias(δ̂) = δ̂ − δ. To invalidate the inference, bias must be
larger than the difference between the estimate and the threshold. To express bias as a
proportion of the original estimate, we can write

bias
(
δ̂
)
to invalidate > δ̂ − δ#

% bias
(
δ̂
)
to invalidate =

bias
(
δ̂
)

δ̂
>

δ̂ − δ#

δ̂
= 1− δ#

δ̂

For example, in the hypothetical study A in figure 2, percent bias to invalidate the
inference = 1− (4/6) = 1/3. Thus, 33% of the estimate would have to be due to bias to
invalidate the inference. In study B, 1− (4/8) = 50% of the estimate would have to be
due to bias to invalidate the inference. Readers should also see Frank et al. (2013) and
Frank and Min (2007) for other extensions and more details of the derivations following
the Rubin causal model.

3 The konfound command
3.1 Syntax

konfound varlist
[
, sig(#) nu(#) onetail(#) uncond(#) rep 0(#)

non li(#)
]

3.2 Description

konfound calculates the impact of an omitted confounding variable necessary to inval-
idate or sustain an inference for a regression coefficient from the user’s model. It also
assesses how strongly an omitted variable has to be correlated with the outcome and
the predictor of interest to invalidate or sustain the inference. After fitting a model
(such as linear regression), the user can provide a list of variable names, and konfound

will produce the impact of an omitted variable (Frank 2000) necessary to invalidate
or sustain an inference for each variable. The command will also provide the impact
table for all observed covariates in the user’s previous model. These can be used as a
benchmark against which to evaluate the impact of an omitted confounding variable
necessary to invalidate an inference.
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konfound also calculates how much bias there must be in an estimate to invalidate
or sustain an inference from the immediately preceding model. After fitting a model
(such as a linear regression), users can provide the list of variable names, and konfound

will calculate the percent bias needed to invalidate or sustain the inference for each
variable in the variable list. The command will also provide sensitivity plots for those
variables that are statistically significant in the user’s model.

3.3 Options

sig(#) specifies the significance level of the test. The default is sig(0.05). To change
the significance level to 0.10, use sig(0.1).

nu(#) specifies the null hypothesis against which to test the estimate. The default is
nu(0).

onetail(#) specifies the one-tail or two-tail test. The default is onetail(0) (two tail).
To change to one tail, use onetail(1).

uncond(#) calculates the impact and component correlations before or after condi-
tioning on covariates in the model. The default is uncond(0), which calculates the
impact and component correlations after conditioning on covariates. To change the
calculation to before conditioning (unconditional) on covariates, use uncond(1).

rep 0(#) controls the effect in the replacement cases for percent bias. The default is
the null effect (which may or may not be zero). When the null hypothesis is not
zero, one can still force the replacement cases to have an effect of zero by assigning
rep 0(1).

non li(#) specifies the basis for interpreting percent bias to invalidate or sustain an in-
ference for nonlinear models (for example, logit or probit). The default is non li(0),
which uses the original coefficient. To change the calculation based on average
marginal effects, use non li(1).

3.4 Example

To illustrate the use of the konfound command, we use two example datasets from
Hamilton (1992). The first example comes from a water use survey reported by Hamilton
(1983) from Concord, New Hampshire. The outcome of interest is household water
usage in the summer of 1981 (water81). Independent variables include household water
usage in the summer of 1980 (water80), household income (income), years of education
(educ), whether the head of the household has retired (retire), and number of people
in the household in 1980 (peop80).
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First, we will regress the outcome on all the independent variables:

. use http://stats.idre.ucla.edu/stat/stata/examples/rwg/concord1
(Hamilton (1983))

. regress water81 water80 income educat retire peop80

Source SS df MS Number of obs = 496
F(5, 490) = 194.82

Model 727354309 5 145470862 Prob > F = 0.0000
Residual 365884401 490 746702.858 R-squared = 0.6653

Adj R-squared = 0.6619
Total 1.0932e+09 495 2208563.05 Root MSE = 864.12

water81 Coef. Std. Err. t P>|t| [95% Conf. Interval]

water80 .4943149 .0268001 18.44 0.000 .4416577 .5469722
income 22.60311 3.502279 6.45 0.000 15.72177 29.48445
educat -44.25776 13.43811 -3.29 0.001 -70.6612 -17.85433
retire 155.4727 96.33892 1.61 0.107 -33.81568 344.761
peop80 225.1984 28.70482 7.85 0.000 168.7987 281.5981
_cons 299.7437 210.0136 1.43 0.154 -112.8947 712.3821

The estimated effect of the number of people in the household (peop80) is statisti-
cally significant (p < 0.001). To quantify the robustness of the inference with respect
to omitted variables or to quantify the percent of the bias necessary to invalidate the
current inference, we use the konfound command:

. konfound peop80
------------------
% Bias Necessary to Invalidate/Sustain the Inference

For peop80:
To invalidate the inference 74.96% of the estimate would have to be due to
> bias; to invalidate the inference 74.96% (372) cases would have to be
> replaced with cases for which there is an effect of 0.
------------------
Impact Threshold for an Omitted Confounding Variable

For peop80:
An omitted variable would have to be correlated at 0.519 with the outcome and at
> 0.519 with the predictor of interest (conditioning on observed covariates) to
> invalidate an inference.
Correspondingly the minimum impact to invalidate an inference for a
> null hypothesis of 0 effect is 0.519 x 0.519=0.2697

These thresholds can be compared with the impacts of observed covariates below.

Observed Impact Table for peop80

Zero-Order Cor(v, Cor(v,

water80 .5339 .7648 .4083
income .2845 .4178 .1188
retire -.3584 -.2731 .0979
educat .0571 .0404 .0023
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Partialled Cor(v, Cor(v,

water80 .458 .726 .3325
income .0714 .2868 .0205
educat -.0545 -.1567 .0085
retire -.225 -.0066 .0015

X represents peop80, Y represents water81, v represents each covariate.
The first table is based on unconditional correlations. The second table is
> based on partialled correlations.

The first table is based on unconditional correlations. The second table is based on
partialled correlations.

The first part of the output calculates the percent bias needed to invalidate the
inference for peop80. As it shows, to invalidate the inference, 74.96% of cases (372)
would have to be replaced with cases for which there is an effect equal to 0. A graphical
illustration is shown in figure 3.

0
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peop80

threshold estimate

Figure 3. Percent bias to invalidate the inference for the effect of peop80 on water81

The second part of the output calculates the impact of an omitted variable necessary
to invalidate or sustain an inference. First, it shows the impact (0.2697) and the com-
ponent correlations (0.519) between the omitted variable and the outcome (water81) as
well as with the predictor of interest (peop80) that are necessary to invalidate the infer-
ence, conditional on other covariates. To calculate impact and component correlation
before conditioning on covariates, type

. konfound peop80, uncond(1)
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Next, two observed impact tables are shown. For each observed covariate in the
model, the first table contains its correlation with the predictor of interest (peop80)
and with the outcome (water81) before conditioning on other covariates; similarly, the
second table contains the correlation between each covariate and the predictor of interest
(peop80) and the outcome (water81) after conditioning on other covariates. These two
tables can be used to evaluate the robustness of the inference by comparing the impact
of the omitted variable necessary to invalidate the inference with the impact of the
observed covariates. For example, figure 4 depicts how the partial correlation between
peop80 and water81 would change when we add an omitted confounding variable in
the regression. It shows that the impact of an omitted confounding variable necessary
to invalidate the inference (ITCV: gray line) would have to be much larger than the
impact of income (as well as education and retirement). Furthermore, if the impact of
an omitted confounding variable equaled that of prior water usage, the inference would
be invalid.2
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Figure 4. Visualization of the impact of an omitted confounding variable on the partial
correlation between peop80 and water81

2. The Stata code to reproduce the figure is as follows (the partial correlation between peop80 and
water81 is 0.3341; x represents the impact):

twoway function (0.3341 - x)/(1-x), ra(0 0.35) ///
ytitle("Partial correlation between peop80 and water81") ///
xtitle("Impact of an omitted confounding variable") ///
xline(0.0205, lcolor(gs1) lpattern(dash)) ///
xline(0.2697, lcolor(gs7) lpattern(dash)) ///
xline(0.3325, lcolor(gs13) lpattern(dash)) ///
text(0.15 0.3325 "water80", color(gs13)) ///
text(0.15 0.269 "ITCV", color(gs7)) ///
text(0.15 0.0205 "Income", color(gs1))
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Finally, note several things:

1. First-time users of konfound need to install three other community-contributed
commands—moss, indeplist, and matsort.

2. Users must run the original regression each time before applying the konfound

command.

3. Bar graphs are generated only for variables that are statistically significant.

4. Users can evaluate the robustness of inference for multiple variables at the same
time; in the previous example, to evaluate the robustness of inference of two
variables—peop80 and retire—type

. konfound peop80 retire

The previous example illustrates how the konfound command can be applied to
linear regression models.3 The next example illustrates how konfound can be applied
to nonlinear models. Note that for a nonlinear model, the impact of an omitted variable
necessary to invalidate an inference should not be used, because it is correlation based
and thus applies only to linear cases. The percent bias to invalidate the inference can
still be applied in this case. However, to calculate the percent bias to invalidate the
inference in a nonlinear model, we recommend basing the calculation on the average
marginal effect (also known as average partial effect—see Wooldridge [2010]) instead
of the original regression coefficient, such that the calculation is robust to different
functional forms of the model (for example, logit versus probit).

The next example we use comes from Hamilton (1992), which is from survey data
concerning toxic waste in Williamstown, Vermont (Hamilton 1985). The outcome of
interest is a dichotomous variable indicating whether the respondent believed the con-
taminated school should be closed (close). The independent variables include how
many years the survey respondent has lived in Williamstown (lived), years of educa-
tion received (educ), whether the respondent attended more than two health and safety
committee meetings (hsc), and whether the respondent is female (female).

3. konfound is also compatible with random-effects models, fixed-effects models, and linear mod-
els with different methods to calculate standard errors, such as robust or clustered standard errors
(Wooldridge 2010). Users who are interested in robustness analysis with alternative methods to cal-
culate the degree of freedom (for example, using the number of level 2 units as the degree of freedom
for level 2 variables) can use the pkonfound command or the web app (https://jmichaelrosenberg.
shinyapps.io/konfound-it/) and manually input the corresponding values for the degree of freedom.

https://jmichaelrosenberg.shinyapps.io/konfound-it/
https://jmichaelrosenberg.shinyapps.io/konfound-it/
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First, we run a logistic regression using close as outcome:

. use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear
(Hamilton (1985))

. logit close lived educ contam hsc female

Iteration 0: log likelihood = -104.60578
Iteration 1: log likelihood = -73.509565
Iteration 2: log likelihood = -73.284048
Iteration 3: log likelihood = -73.283842
Iteration 4: log likelihood = -73.283842

Logistic regression Number of obs = 153
LR chi2(5) = 62.64
Prob > chi2 = 0.0000

Log likelihood = -73.283842 Pseudo R2 = 0.2994

close Coef. Std. Err. z P>|z| [95% Conf. Interval]

lived -.0433669 .015164 -2.86 0.004 -.0730878 -.013646
educ -.1684151 .0904774 -1.86 0.063 -.3457475 .0089174

contam 1.185863 .4641455 2.55 0.011 .2761551 2.095572
hsc 2.287901 .4836289 4.73 0.000 1.340006 3.235796

female .7286153 .4422411 1.65 0.099 -.1381614 1.595392
_cons 1.223659 1.334176 0.92 0.359 -1.391278 3.838595

The results show that the estimated effect of hsc is statistically significant (p <
0.001). To calculate the percent bias necessary to invalidate the inference for hsc, we
use konfound with a nonlinear model option as below:

. konfound hsc, non_li(1)

Average marginal effects Number of obs = 153
Model VCE : OIM

Expression : Pr(close), predict()
dy/dx w.r.t. : hsc

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

hsc .356942 .0532873 6.70 0.000 .2525008 .4613832

Following calculation is based on Average Marginal Effect:
------------------
% Bias Necessary to Invalidate/Sustain the Inference

For hsc:
To invalidate the inference 70.50% of the estimate would have to be due to
> bias; to invalidate the inference 70.50% (108) cases would have to be
> replaced with cases for which there is an effect of 0.
------------------

(output omitted )
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Figure 5. Percent bias necessary to invalidate the inference for the effect of hsc on
close

Results show that to invalidate the inference, 70.5% (108) cases would have to be
replaced with cases for which there is an effect of 0. The calculation is based on average
marginal effects instead of on the original coefficient; in this case, the inference is more
robust compared with the calculation based on the original coefficient, which would be
58.23% (89).4

4 The mkonfound command

4.1 Syntax

mkonfound var1 var2
[
, sig(#) nu(#) onetail(#) rep 0(#) z tran(#)

]

4.2 Description

mkonfound calculates the impact of an omitted confounding variable necessary to in-
validate an inference of a regression coefficient for multiple studies. The command also
assesses how strong an omitted confounding variable must be correlated with the out-
come and with the predictor of interest to invalidate or sustain the inference for each
study. Users input two variables: the observed t ratio and the degrees of freedom for
each study. mkonfound produces four variables. The first variable is itcv , indicating
the impact of an omitted variable needed to invalidate or sustain the inference. The

4. For some recent developments of the robustness analysis for nonlinear models, see
https://jmichaelrosenberg.shinyapps.io/shinykonfound/.

https://jmichaelrosenberg.shinyapps.io/shinykonfound/
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second variable is r cv y, indicating the correlation between the omitted variable and
the outcome necessary to invalidate or sustain an inference, conditioning on other co-
variates. The third variable is r cv x, indicating the correlation between the omitted
variable and the predictor of interest necessary to invalidate or sustain an inference,
conditioning on other covariates. The fourth variable is stat sig , indicating if the
original regression coefficient is statistically significant; it is 1 if yes and 0 otherwise.

mkonfound also calculates how much bias there must be in an estimate to invali-
date or sustain an inference for multiple studies. The bias necessary to invalidate or
sustain an inference is interpreted in terms of sample replacement. Users input two
variables: the observed t ratio and the degrees of freedom in each study. mkonfound

produces two variables. The first variable is percent replace, indicating what percent
of the original cases must be replaced to invalidate the inference; the second variable
is percent sustain, indicating what percent of the original cases must be replaced to
sustain an inference.

4.3 Options

sig(#) specifies the significance level of the test. The default is sig(0.05). To change
the significance level to 0.10, use sig(0.1).

nu(#) specifies the null hypothesis against which to test the estimate. The null hy-
pothesis is defined as a correlation, ranging from −1 to 1. The default is nu(0).

onetail(#) specifies the one-tail or two-tail test. The default is onetail(0) (two tail).
To change to one tail, use onetail(1).

rep 0(#) specifies the effect in the replacement cases for percent bias to invalidate the
inference. The default is the null effect (which may or may not be zero). To force
replacing cases with an effect of zero, use rep 0(1).

z tran(#) calculates the percent bias to invalidate the inference based on Fisher’s z
transformation (apply only to nonzero hypothesis testing). The default is z tran(0),
which calculates the original test statistic. To calculate based on Fisher’s z, use
z tran(1). This option will produce two additional variables based on Fisher’s z:
percent replace z and percent sustain z.
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4.4 Example

To illustrate the use of the mkonfound command, we generate t ratios and degrees of
freedom for 10 studies:

. clear

. set obs 10
number of observations (_N) was 0, now 10

. drawnorm t, mean(1) sd(3)

. generate df=int(200*runiform())

. list

t df

1. .2507508 44
2. -5.757681 83
3. -3.965851 43
4. -2.274665 160
5. .7281679 176

6. -3.385429 98
7. 3.947882 48
8. -1.210522 173
9. .65233 41
10. .897909 122

Next, we calculate the percent bias necessary to invalidate or sustain the inference
and impact threshold for omitted variables using the mkonfound command:

. mkonfound t df

. list

1. t df itcv_ r_cv_y r_cv_x stat_s~_ percen~e
.2507508 44 -.1975358 .444 -.444 0 .

percen~n
87.01

2. t df itcv_ r_cv_y r_cv_x stat_s~_ percen~e
-5.757681 83 -.409977 .64 -.64 1 60.08

percen~n
.

3. t df itcv_ r_cv_y r_cv_x stat_s~_ percen~e
-3.965851 43 -.3198859 .566 -.566 1 43.2

percen~n
.
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4. t df itcv_ r_cv_y r_cv_x stat_s~_ percen~e
-2.274665 160 -.0269663 .164 -.164 1 12.84

percen~n
.

5. t df itcv_ r_cv_y r_cv_x stat_s~_ percen~e
.7281679 176 -.0806858 .284 -.284 0 .

percen~n
62.75

6. t df itcv_ r_cv_y r_cv_x stat_s~_ percen~e
-3.385429 98 -.158942 .399 -.399 1 39.26

percen~n
.

7. t df itcv_ r_cv_y r_cv_x stat_s~_ percen~e
3.947882 48 .3028256 .55 .55 1 43.71

percen~n
.

8. t df itcv_ r_cv_y r_cv_x stat_s~_ percen~e
-1.210522 173 .0495394 .223 .223 0 .

percen~n
38.24

9. t df itcv_ r_cv_y r_cv_x stat_s~_ percen~e
.65233 41 -.1545698 .393 -.393 0 .

percen~n
66.3

10. t df itcv_ r_cv_y r_cv_x stat_s~_ percen~e
.897909 122 -.0813519 .285 -.285 0 .

percen~n
54.07

To calculate the impact threshold for omitted variables, mkonfound generates four
variables for each study. The first variable is itcv , indicating the impact of an omitted
variable necessary to invalidate or sustain an inference. The second variable is r cv y,
indicating the correlation between the omitted variable and the outcome necessary to
invalidate or sustain an inference, conditioning on other covariates in the model. The
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third variable is r cv x, indicating the correlation between the omitted variable and
the predictor of interest necessary to invalidate or sustain an inference, conditioning
on other covariates in the model. The fourth variable is stat sig , indicating if the
original regression coefficient is statistically significant; it is 1 if yes and 0 otherwise.

To calculate the percent bias necessary to invalidate or sustain the inference, the
command mkonfound generates two variables for each study as in the last two columns:
percent replace (percen~e) and percent sustain (percen~n). For statistically sig-
nificant studies, percent replace shows the percent of cases that need to be replaced
with cases with an effect of zero to invalidate the inference. For studies that are not sta-
tistically significant, percent sustain shows the percent of zero-effect cases that need
to be replaced with cases that have an effect at the threshold of inference to sustain the
inference.

5 The pkonfound command

5.1 Syntax

pkonfound # # # #
[
, sig(#) nu(#) onetail(#) rep 0(#)

]

5.2 Description

pkonfound takes the user’s input of numerical values (for example, from a published
study) and calculates 1) the percent bias in an estimate necessary to invalidate or
sustain an inference (the percent bias necessary to invalidate or sustain an inference is
interpreted in terms of sample replacement); 2) the impact of an omitted confounding
variable necessary to invalidate or sustain an inference for a regression coefficient. It
also assesses how strongly an omitted variable must be correlated with the outcome and
with the predictor of interest to invalidate or sustain the inference.5

The user must input four numbers. The first number is the estimated value of
the effect (for example, the estimated regression coefficient); the second number is the
standard error of the estimated effect (regression coefficient); the third number is the
sample size; the fourth number is the number of covariates in the model.

5.3 Options

sig(#) specifies the significance level of the test. The default is sig(0.05). To change
the significance level to 0.10, use sig(0.1).

nu(#) specifies the null hypothesis against which to test the estimate. The default is
nu(0).

5. Users who are interested in using the pkonfound command can also refer to the web app
(https://jmichaelrosenberg.shinyapps.io/konfound-it/).

https://jmichaelrosenberg.shinyapps.io/konfound-it/
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onetail(#) specifies the one-tail or two-tail test. The default is onetail(0) (two tail).
To change to one tail, use onetail(1).

rep 0(#) controls the effect in the replacement cases for percent bias to invalidate the
inference. The default is the null effect (which may or may not be zero). When the
null hypothesis is not zero, one can still force the replacement cases to have an effect
of zero by assigning rep 0(1).

5.4 Example

To illustrate the use of the pkonfound command, let us assume that in a published
study the estimated effect is 10, the standard error of the estimate is 2, the sample
size is 100, and the number of covariates is 4. To calculate the percent bias necessary
to invalidate the inference and the impact threshold for the omitted variable, type the
following:

. pkonfound 10 2 100 4
------------------
Impact Threshold for an Omitted Confounding Variable

An omitted variable would have to be correlated at 0.569 with the outcome and at
> 0.569 with the predictor of interest (conditioning on observed covariates) to
> invalidate an inference.
Correspondingly the minimum impact to invalidate an inference for a
> null hypothesis of 0 effect is 0.569 x 0.569=0.3240
------------------
% Bias Necessary to Invalidate/Sustain the Inference

To invalidate the inference 60.29% of the estimate would have to be due to
> bias; to invalidate the inference 60.29% (60) cases would have to be
> replaced with cases for which there is an effect of 0.

Note:
For non-linear models, the impact threshold for an omitted confounding variable
> should not be used.
The % bias calculation is based on the original coefficient, compare
with the use of average marginal effects as in the [konfound] command.

Similarly to the konfound command, the results are divided into two parts. The
first part of the output shows the impact threshold and component correlations for the
omitted confounding variable necessary to invalidate the inference. The second part of
the output shows the percent bias necessary to invalidate the inference.

6 Examples of publishable write-ups

To facilitate the interpretation of the robustness analysis, here we provide some exam-
ples of publishable write-ups for correlation-based and case replacement-based robust-
ness analysis. The example of the correlation-based approach comes from Frank et al.
(2008), where the main focus is on whether teachers certified by the National Board
of Professional Teaching Standards (NBPTS) provide more instructional help to other
teachers:
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While we may be close to exhausting our ability to reduce bias that can be
attributed to confounding variables measured in our data, we use Frank’s
(2000) indices to quantify how much the impact of an unobserved confound
must be to invalidate the inference that NBPTS certification affects the num-
ber of others a teacher helps with instructional matters. Here we base the
analysis on the estimate and inference using propensity weighting to esti-
mate the EOTM, the most conservative of the estimates that used the full
sample and controlled for covariates.

Given the sample size of 1,131, the threshold for statistical significance,
r#, is .058. The observed t-ratio of 4.13 (4.13 = .57/.138) translates to
a correlation between being and NBPTS and number of others helped of
r = .122. From (5), the impact of an unmeasured confound would have
to be greater than .068 to invalidate our inference; the impact threshold =
(r − r#)/(1 − |r#|) = (.122 − .058)/(1 − |.058|) = .068. Correspondingly,
each component correlation would have to be equal to .26. Thus to inval-
idate the inference that NBPTS certification increases the help provided by
a teacher, a confounding variable would have to be correlated with NBPTS

certification at 0.26 and with help provided at 0.26. These are moderate
correlations by social science standards (Cohen & Cohen, 1983). Moreover,
these are zero-order correlations, assuming that the unmeasured confound is
uncorrelated with the measured covariates (see Frank, 2000). The relevant
partial correlations from which the impact of an unobserved confound would
be constructed would be smaller than the zero-order correlations because of
correlations with existing covariates.

Though the magnitude of the impact threshold for an unmeasured variable
can be interpreted in terms of general findings in the social sciences, it is also
helpful to compare the threshold with the impacts of measured covariates.
The extent to which a teacher believes leadership will enhance teaching
has the strongest impact of the measured covariates. Its impact on the
coefficient for NBPTS certified teachers on help provided is 0.011 which is
the product of the correlation with being an NBPTS certified teacher (0.17)
and the correlation with number of other teachers helped (0.06). Thus the
impact of an unmeasured confound necessary to invalidate the inference
of .068 would have to be more than six times greater than the strongest
impact of the measured covariates, .011, to invalidate the inference that
NBPTS certification affects the number of colleagues a teacher helps with
instruction.

An example of the case replacement-based approach comes from Saw et al. (2017),
where the focus is the impact of being labeled as a persistently lowest-achieving (PLA)
school on students’ academic performances:

To inform policy debates and theoretical interpretations of the causal effects
of the PLA list, it is useful to quantify the discourse about the robustness
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of the inferences in this study. We quantify how much bias there must be
in our RD estimates to invalidate inferences in terms of replacement data,
16 focusing only on the positive PLA list effects on the average of students’
scale scores in writing and the percentage of students who met proficiency
level in social studies. As shown in table 5, to invalidate our causal inference
of the PLA list effects on the average of students’ scale scores in writing, we
would need to replace about 25% to 32% of our PLA schools with school
samples for which there is no effect of being on the list. These 17 to 22
replacement schools could represent populations not directly in our sample,
such as schools from outside of the selected bandwidth. Additionally, to
invalidate the inference of an effect of assignment to the PLA list on social
studies achievement, we would have to replace 6% to 8.6% of schools with
schools in which there was no effect of being on the PLA list.

More write-up examples from other fields can be found in appendix B.

7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-3

. net install st0565 (to install program files, if available)

. net get st0565 (to install ancillary files, if available)
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Appendix A. Maximizing the impact of an omitted variable

The formula for partial correlation can be represented as (also applies to regression)

rx·y|cv =
rx·y − rcv·y × rcv·x√
1− r2cv·y

√
1− r2cv·x

We want to minimize the function of partial correlation given (assuming all terms
are positive)

k = rcv·y × rcv·x ⇒ rcv·y =
k

rcv·x

⇒ rx·y|cv =
rx·y − k

rcv·x
× rcv·x√{

1−
(

k
rcv·x

)2}
(1− r2cv·x)

=
rx·y − k√

1−
(

k
rcv·x

)2
− r2cv·x −

(
k2

r2cv·x

)
(−r2cv·x)

=
rx·y − k√

1−
(

k
rcv·x

)2
− r2cv·x + k2

To maximize the impact, we want to minimize the function. This occurs when the
denominator is maximized as follows:

d

drcv·x

(
1− k2

r2cv·x
− r2cv·x + k2

)
= 0

⇒ 2
k2

r3cv·x
− 2rcv·x = 0

⇒ rcv·x =
k2

r3cv·x
⇒ r4cv·x = k2 ⇒ rcv·x = ±

√
k, rcv·y = ±

√
k

http://joshuamrosenberg.com
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The positive term is used when k is positive. Otherwise, the negative root is used for
suppression.

Note the second derivative is

d

drcv·x

(
2

k2

r3cv·x
− 2rcv·x

)
= −6

k2

r4cv·x
− 2

which is less than zero when

−6
k2

r4cv·x
− 2 < 0 ⇒ k2

r4cv·x
> −1

3

This condition always holds, so the first derivative above defines a maximum.
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tifying the robustness of causal inferences
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